Все виды алканов. Алканы — номенклатура, получение, химические свойства

Цель: знакомство учащихся с особенностями строения, гомологическим рядом, изомерией, номенклатурой алканов, их получением.

  • Образовательные. Получить первоначальные представления о алканах (общая формула, гомологический ряд алканов, их состав и строение, применение).
  • Развивающие.
  • Развивать полученные раннее представления об изомерии и умения давать названия по номенклатуре ИЮПАК.
  • Воспитательные.
  • Воспитывать желание учится активно, с интересом, повышать мотивацию к изучению химии.

Оборудование: компьютер, мультимедиа проектор, экран.

Ход работа

I. Организационный момент.

II. Мотивационный блок.

Учитель. Мы продолжаем изучать органическую химию. Я предлагаю перенестись вам на 160 лет назад, в добрую старую Англию (Презентация . Слайд 1 ) .

1848г в Ньюкастле умерла 15-летняя Ханна Гринер во время небольшого хирургического вмешательства. Врач Меггисон, который проводил операцию, во время дознания так изложил факты. “Я усадил больную в кресло и поднес к ее носу платок, смоченный всего одной чайной ложечкой этого вещества. Ханна сделала два вдоха. Через минуту я попросил моего ассистента приступить к операции. Еще через минуту, я приоткрыл ей глаза, они так и остались открытыми, сосуды склер были переполнены кровью, губы, и лицо сильно побелели. Я решил выполнить кровопускание из вен, но получил крови не больше ложки. Я думаю, что до моей попытки кровопускания она была мертва. С момента первого вдыхания этого вещества и до смерти прошло не более трех минут”. Что стало причиной смерти Ханны до сих пор загадка. Как вы думаете, о каком веществе идет речь? (Выслушиваются все предположения.) Хлороформ. Найдите формулу. (Используют справочник, интернет.) СН3Сl. Это вещество является производным СН4. К какому классу относится это вещество? Алканы. (Учащиеся записывают тему урокав тетрадь). Алканы, первый класс из всех классов органических веществ которые мы будем изучать. Поэтому я предлагаю вам план по которому будут изучаться все классы органических веществ.

1. Определение. Формула. Состав.
2. Строение.
3. Гомологический ряд. Номенклатура.
4. Виды изомерии.
5. Способы получения.
6. Физические свойства.
7. Химические свойства.
8. Применение.

(Пункты 1–5 изучаются на первом уроке, 6–8 на втором уроке.)

III. Целепологание.

Посмотрите первые 5 пунктов плана и сформулируйте цель урока.

IV. Исполнительский блок.

Учитель: Как вы думаете, ребята, а зачем нам изучать алканы? Откройте учебник стр.79. рассмотрите схему применения алканов. Как вы видите, алканы имеют широкое применение. Поэтому, я думаю, что каждый человек должен знать о строении, свойствах и получении этих веществ.

Учитель. Что вы знаете об алканах? (На доске записываются все ответы учащихся. Общая формула CnH2n+2; С-С одинарная связь, -ан) На основании записей, учащиеся дают общую характеристику алканам. Сверяются с слайдом (Слайд 2).

Среди формул органических веществ, выбрать формулы алканов (работа с тренажером) (Приложение 1) . Все формулы найденные учащимися, учитель записывает на доске в столбик. Образуется ряд веществ, которые отличаются друг от друга на одну или несколько групп СН2. Учащиеся делают вывод, что образовался гомологический ряд (Слайд 3) .

Вспоминают номенклатуру алканов.

Учитель. Строение алканов изучаем на примере молекулы метана. Просмотрев фрагмент ответьте на вопросы: – Что такое гибридизация ? – Какой тип гибридизации у алканов? – Углы между орбиталями? Длина С-Ссвязи? (просмотр Cтроение молекулы метана (N 132051) ЦОР) . (Работа со Слайдом 4 ).

Учитель. Давайте вспомним, что такое изомерия, и какие виды изомерии характерны для органических веществ (Сслайд 5) .

Как вы думаете, какие виды изомерии характерны для апканов? Методом исключения учащиеся устанавливают, что для алканов характерен один вид изомерии. Изомерия углеродного скелета. Один из учащихся выходит к доске строит изомеры для вещества с формулой С5Н12, даёт им названия, используя номенклатуру ИЮПАК (получает оценку) . По желанию, к доске приглашается учащийся для выполнения обратного задания.

Задание. Составьте структурные формулы, для следующих веществ.

а) 2,3 диметилпентана; б) 2,5 диметилгексана; г) 3 метил-3 этилгептана (получает оценку).

Учитель. Так, как алканы имеют широкое применение, необходимо изучить способы их получения. (Получение изучается с помощью учебника стр.70. Реакции записываются в тетрадь со Слайда 6)

V. Контрольно-оценочный блок.

Предлагается самостоятельная работа в виде теста (Приложение 2) . (Идет взаимопроверка, выставляются оценки). Вернутся к плану урока, посмотреть 1–5 пунктов, ответить на вопросы

– Достигли ли мы поставленной цели?
– Что нового на уроке узнали?
– Что было интересным?

Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

Формула алканов

Формулу алкана можно записать как:

При этом n больше или равно 1.

Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

Изомерия углеродного скелета алканов

С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

Получение алканов

Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

Физические свойства алканов

Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

Химические свойства алканов

Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

Так выглядит формула радикального замещения алканов (галогенирование алканов).

Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

СН3СОNа + NаОН СН4 + Nа2С03

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

RСН2СОNа +NаОН -> RСН3 + Nа2С03

5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

6. Гидролиз карбидов. При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который надо звонить по телефону 04, определяется запахом меркаптанов - серусодер-жащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства

1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

СН4 + С12 -> СН3Сl + HCl

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

СН3Сl + С12 -> HCl + СН2Сl2
дихлорметан хлористый метилен

СН2Сl2 + Сl2 -> HCl + CHCl3
трихлорметан хлороформ

СНСl3 + Сl2 -> HCl + ССl4
тетрахлорметан четыреххлористый углерод

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

СН3-СН3 -> СН2=СН2 + Н2

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.

СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:


Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:


5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.

Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.

Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии .

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:

1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света, нагревания).

2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).

3. Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Научные исследования Н.Н. Семенова

Семенов Николай Николаевич

(1896 - 1986)


Советский физик и физикохимик, академик. Лауреат Нобелевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим этот механизм на примере реакции хлорирования метана:

СН4 + Сl2 -> СН3Сl + НСl

Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы:

Сl: Сl -> Сl· + Сl·

Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода:

СН4 + Сl· -> СН3· + НСl

и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов:

СН3· + Сl2 -> СН3Сl + Сl· и т. д.

Происходит развитие цепи.

Наряду с образованием радикалов происходит их «гибель» в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов:

СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2

СН3· + СН3· -> СН3-СН3

Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько необходимо для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.

Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к необходимости разрабатывать сложные и дорогостоящие методики очистки и выделения целевых веществ.

В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования.

Теперь попытаемся рассмотреть реакцию галогенирования (например, бромирования) более сложного органического соединения - пропана.

Если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:


Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.

Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причине основным продуктом реакции бромирования пропана является 2-бром-пропан - соединение, образование которого протекает через более устойчивую промежуточную частицу.

Приведем несколько примеров свободнорадикальных реакций:

Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединений - растворителей, исходных веществ для многих синтезов.

Каталитическое окисление алканов кислородом

Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, например:

СН4 + [О] -> СН3ОН

Применение

Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Они являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединений.

Соединения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединений.

Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д.

Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом в зависимости от условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью.

Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всего в линейных, или нормальных, углеводородах.

При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединений с образованием большого числа свободных радикалов, которые «запускают» свободнорадикальную цепную реакцию горения раньше, чем это необходимо. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.

Таким образом, основной причиной детонации является наличие перекисных соединений, способность образовывать которые максимальна у линейных углеводородов.

Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан).

Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (например, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана.

В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

Нахождение в природе и получение

На сегодняшнем уроке вы познакомились с таким понятием, как алканы, а также узнали о его химическом составе и методах получения. Поэтому давайте сейчас более подробно остановимся на теме нахождения алканов в природе и узнаем, как и где алканы нашли применение.

Главными источниками для получения алканов являются природный газ и нефть. Они составляют основную часть продуктов от нефтипереботки. Распространенный, в залежах осадочных пород метан, также является газовым гидратом алканов.

Основной составляющей природного газа является метан, но в его составе присутствует и небольшая доля этана, пропана и бутана. Метан можно обнаружить в выделениях угольных пластов, болот и в попутных нефтяных газах.

Также анканы можно получить методом коксования каменного угля. В природе встречаются и так называемые твердые алканы – озокериты, которые представлены в виде залежей горного воска. Озокерит можно обнаружить в восковых покрытиях растений или их семян, а также в составе пчелиного воска.

Промышленное выделение алканов берется из природных источников, которые к счастью пока неисчерпаемые. Их получают методом каталитического гидрирования оксидов углерода. Также метан можно получить в лабораторных условиях, используя метод нагревания ацетата натрия с твердой щелочью или гидролизом некоторых карбидов. Но и также алканы можно получить способом декарбоксилирования карбоновых кислот и при их электролизе.

Применение алканов

Алканы на бытовом уровне, широко применяются во многих сферах деятельности человека. Ведь очень сложно представить нашу жизнь без природного газа. И ни для кого не будет секретом, что основой природного газа является метан, из которого производят технический углерод, используемый при производстве топографических красок и шин. Холодильник, который есть в доме у каждого, также работает благодаря соединениям алканов, применяющихся в качестве хладагентов. А полученный из метана ацетилен используют для сварки и резки металлов.

Теперь вы уже знаете, что алканы используются как топливо. Они присутствуют в составе бензина, керосина, солярового масла и мазута. Кроме этого, они есть и в составе смазочных масел, вазелина и парафина.

В качестве растворителя и для синтеза различных полимеров, широкое применение нашел циклогексан. А в наркозе используют циклопропан. Сквалан, как высококачественное смазочное масло, является компонентом многих фармацевтических и косметических препаратов. Алканы являются сырьем, с помощью которого получают такие органические соединения, как спирт, альдегиды и кислоты.

Парафин является смесью высших алканов, а так как он нетоксичен, то широко используется в пищевой промышленности. Его применяют для пропитки упаковок для молочной продукции, соков, круп и так далее, но в том числе и при изготовлении жевательных резинок. А разогретый парафин используют в медицине при парафинолечении.

Помимо выше сказанного, парафином пропитаны головки спичек, для их лучшего горения, карандаши и из него изготавливают свечи.

С помощью окисления парафина получают кислородосодержащие продукты, в основном органические кислоты. При смешении жидких углеводоpодов с определенным числом атомов углерода получают вазелин, который нашел широкое применение как парфюмерии и косметологии, так и в медицине. Его применяют для приготовления различных мазей, кремов и гелей. А также используют для тепловых процедур в медицине.

Практические задания

1. Запишите общую формулу углеводородов гомологического ряда алканов.

2. Напишите формулы возможных изомеров гексана и назовите их по систематической номенклатуре.

3. Что такое крекинг? Какие виды крекинга вы знаете?

4. Напишите формулы возможных продуктов крекинга гексана.

5. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.

6. Приведите структурную формулу углеводорода С5Н12, образующего при бромировании только одно монобром-производное.

7. На полное сгорание 0,1 моль алкана неизвестного строения израсходовано 11,2 л кислорода (при н. у.). Какова структурная формула алкана?

8. Какова структурная формула газообразного предельного углеводорода, если 11 г этого газа занимают объем 5,6 л (при н. у.)?

9. Вспомните, что вам известно о применении метана, и объясните, почему утечка бытового газа может быть обнаружена по запаху, хотя его составляющие запаха не имеют.

10*. Какие соединения могут быть получены каталитическим окислением метана в различных условиях? Напишите уравнения соответствующих реакций.

11*. Продукты полного сгорания (в избытке кислорода) 10,08 л (н. у.) смеси этана и пропана пропустили через избыток известковой воды. При этом образовалось 120 г осадка. Определите объемный состав исходной смеси.

12*. Плотность по этану смеси двух алканов равна 1,808. При бромировании этой смеси выделено только две пары изомерных монобромалканов. Суммарная масса более легких изомеров в продуктах реакции равна суммарной массе более тяжелых изомеров. Определите объемную долю более тяжелого алкана в исходной смеси.

АЛКАНЫ (предельные углеводороды, парафины)

  • Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.

Алканы – название предельных углеводородов по международной номенклатуре.
Парафины – исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – имеющий мало сродства, малоактивный).
Предельными , или насыщенными , эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.

Простейшие представители алканов:

Модели молекул:


При сравнении этих соединений видно, что они отличаются друг от друга на группу -СН 2 - (метилен ). Добавляя к пропану еще одну группу -СН 2 - , получим бутан С 4 Н 10 , затем алканы С 5 Н 12 , С 6 Н 14 и т.д.

Теперь можно вывести общую формулу алканов. Число атомов углерода в ряду алканов примем за n , тогда число атомов водорода составит величину 2n+2 . Следовательно, состав алканов соответствует общей формуле C n H 2n+2 .
Поэтому часто используется такое определение:

Алканы - углеводороды, состав которых выражается общей формулой C n H 2n+2 , где n – число атомов углерода.

Строение алканов

Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:

С–С и С–Н .

Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

Электронные и структурные формулы отражают химическое строение , но не дают представления о пространственном строении молекул , которое существенно влияет на свойства вещества.

Пространственное строение , т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp 3 -гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp 3 -гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp 3 -АО другого атома углерода, образуя σ-связи С-Н или С-С.



Четыре σ-связи углерода направлены в пространстве под углом 109 о 28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН 4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

Валентный угол Н-С-Н равен 109 о 28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

Для записи удобно использовать пространственную (стереохимическую) формулу.

В молекуле следующего гомолога – этана С 2 Н 6 – два тетраэдрических sp 3 -атома углерода образуют более сложную пространственную конструкцию:

Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н -бутана (VRML-модель) или н -пентана:

Изомерия алканов

  • Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами .

Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят к структурной изомерии . Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С 4 Н 10 .
Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии, когда два стереоизомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют оптической изомерией .

Структурная изомерия алканов

  • Структурные изомеры - соединения одинакового состава, отличающиеся порядком связывания атомов, т.е. химическим строением молекул.

Причиной проявления структурной изомерии в ряду алканов являетсяспособность атомов углерода образовывать цепи различного строения.Этот вид структурной изомерии называется изомерией углеродного скелета .

Например, алкан состава C 4 H 10 может существовать в виде двух структурных изомеров:

а алкан С 5 Н 12 – в виде трех структурных изомеров,отличающихся строением углеродной цепи:

С увеличением числа атомов углерода в составе молекул увеличиваютсявозможности для разветвления цепи, т.е. количество изомеров растет сростом числа углеродных атомов.

Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и,соответственно, меньших межмолекулярных взаимодействий, кипят при болеенизкой температуре, чем их неразветвленные изомеры.

При выводе структурных формул изомеров используют следующие приемы.

Дата: ____________

11-11

Алканы. Гомологический ряд алканов. Номенклатура и изомерия алканов

ТЕМА

ЦЕЛЬ

Дать учащимся понятие о предельных углеводородах, их химическом, пространственном и электронном строении. Ознакомить с понятием гомологии, правилами названия веществ и составления формул по современной номенклатуре. Продолжить формирование мировоззренческих понятий: о познаваемости природы, причинно-следственной зависимости между составом, строением, свойствами и применением предельных углеводородов.

СОДЕРЖАНИЕ

Гомологический ряд алканов и их строение

ТЕРМИНЫ

Алкан, гомологи, изомеры

ХИМ ЭКСПЕРИМЕНТ

ОБОРУДОВАНИЕ

Интерактивная доска

ДОМ ЗАДАНИЕ

ПЛАН УРОКА.

Опрос домашнего задания. Актуализация знаний

    Алканы. (Предельные углеводороды. Парафины. Насыщенные углеводороды.)

Алканы - углеводороды в молекулах которых все атомы углерода связаны одинарными связями (-) и имеют общую формулу:

C n H 2n+2

    Что такое гомологи? (учащиеся отвечают на данный вопрос)

Гомологический ряд алканов

Алканы, имея общую формулу С n H 2 n +2 , представляют собой ряд родственных соединений с однотипной структурой, в котором каждый последующий член отличается от предыдущего на постоянную группу атомов (- CH 2 -). Такая последовательность соединений называется гомологическим рядом (от греч. homolog – сходный), отдельные члены этого ряда – гомологами , а группа атомов, на которую различаются соседние гомологи, – гомологической разностью .

Гомологический ряд алканов легко составить, прибавляя каждый раз к предыдущей цепочке новый атом углерода и дополняя его оставшиеся валентности до 4-х атомами водорода. Другой вариант – добавление в цепь группы -СН 2 -:

CH 4 или Н- СН 2 -Н – первый член гомологического ряда – метан

(содержит 1 атом углерода);

CH 3 - CH 3 или Н- СН 2 -СН 2 -Н – 2-й гомолог – этан (2 атома С);

CH 3 - CH 2 - CH 3 или Н- СН 2 -СН 2 -СН 2 -Н – 3-й гомолог – пропан (3 атома С);

CH 3 - CH 2 - CH 2 - CH 3 или Н- СН 2 -СН 2 -СН 2 - СН 2 - Н – бутан (4 атома С)

Суффикс -ан является характерным для названия всех алканов. Начиная с пятого гомолога, название алкана образуется из греческого числительного, указывающего число атомов углерода в молекуле, и суффикса –ан : пентан С 5 Н 12 , гексан С 6 Н 14 , гептан С 7 Н 16 , октан С 8 Н 18 , нонан С 9 Н 20 , декан С 10 Н 22 и т.д.

    Виды изомерии для алканов:

Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами .

Различия в порядке соединения атомов в молекулах (т. е. в химическом строении) приводят к структурной изомерии . Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т. е. начиная с бутана С 4 Н 10 . Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или пространственные (стереохимические) формулы. Алканы, начиная с этана С 2 Н 6 , существуют в различных пространственных формах, обусловленных внутримолекулярным вращением по s-связям С–С, и проявляют так называемую поворотную изомерию .

Кроме того, при наличии в молекуле 7-ми и более углеродных атомов, возможен еще один вид пространственной изомерии, когда два изомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой).

Такие различия в строении молекул называют зеркальной или оптической изомерией.

    Алгоритм.

    1. Выбор главной цепи:

2. Нумерация атомов главной цепи:

3. Формирование названия:

2 - метилбутан

    Строение алканов.

Атом углерода во всех органических веществах находится в "возбуждённом" состоянии, т. е. Имеет на внешнем уровне четыре неспаренных электрона.

Каждое электронное облако обладает запасом энергии: s- облако имеет менший запас энергии, чем р-облако, в атоме углерода они находятся в разных энергетических состояниях. Поэтому при образовании химической связи происходит гибридизация, т. е. выравнивание электронных облаков по запасу энергии. Это отображается наформе и направленности облаков, происходит перестройка (пространственная) электронных облаков.

В результате sp3 - гибридизации все четыре валентных электронных облака гибридизованы: валентный угол между этими осями гибридизованных облаков 109° 28", поэтому молекулы имеют пространственную тетраэдрическую форму, форма углеродных цепей зигзагообразна; атомы углерода не находятся на одной прямой, т. к. при вращении атомов валентные углы остаются прежними.

Все органические вещества построены в основном за счёт ковалентных связей. Углерод - углеродные и углерод - водородные связи относятся к сигма - связям - это связь, образующаяся при перекрывании атомных орбиталей по линии, проходящей через ядра атомов. Возможно вращение вокруг сигма - связей, поскольку эта связь имеет осевую симметрию.

Для закрепления материала ответить на вопросы в конце параграфа, а также выполнить задания по задачнику

Домашнее задание: §3.1 пересказ, №3,4,6,8 стр. 67



Публикации по теме