Синтез сложных эфиров. Сложные эфиры — номенклатура, получение, химические свойства

В органической химии существует два основных класса эфиров: простые и сложные. Это химические соединения, образующиеся при гидролизе (отщеплении молекулы воды). Простые эфиры (их еще называют этеры) получают при гидролизе соответствующих спиртов, а сложные эфиры (эстеры) – соответствующих спирта и кислоты.

Несмотря на похожее название, простые и сложные эфиры это два совершенно разных класса соединений. Их получают разными путями. Они имеют различные химические свойства. Различаются они и структурной формулой. Общими есть лишь некоторые физические свойства самых известных их представителей.

Физические свойства этеров и эстеров

Простые эфиры - малорастворимые в воде, легкокипящие жидкости, легко воспламеняются. При комнатной температуре, простые эфиры - приятно пахнущие бесцветные жидкости.

Сложные эфиры, имеющие малую молекулярную массу - легко испаряющиеся бесцветные жидкости, приятно пахнут, часто фруктами или цветами. С возрастанием карбоновой цепи ацилгруппы и спиртового остатков, их свойства становятся другими. Такие эфиры твердые вещества. Их точка плавления зависит от длинны углеродных радикалов и структуры молекулы.

Структура простых и сложных эфиров

Оба соединения имеют простую эфирную связь (-О-), но в сложных эфирах она входит в состав более сложной функциональной группы (-COO), в которой первый атом кислорода связан с атомом карбона одинарной связью (-О-), а второй двойной (=О).

Схематически можно изобразить так:

  1. Простой эфир: R–O–R1
  2. Сложный эфир: R-COO-R1

В зависимости от радикалов в R и R1, простые эфиры делят на:

  1. Симметричные эфиры – такие у которых алкильные радикалы идентичны, например, дипропиловыйэфир, диэтиловый эфир, дибутиловый эфир и т.п.
  2. Асимметричные эфиры или смешанные – с разными радикалами, например, этилпропиловый эфир,метилфениловый эфир, бутилизопропиловый и т.д.

Сложные эфиры подразделяют на:

  1. Сложные эфиры спирта и минеральной кислоты: сульфатной (-SO3H), нитратной (-NO2) и др.
  2. Сложные эфиры спирта и карбоновой кислоты, например, С2Н5СО-, С5Н9СО-, СН3СО- и т. д.

Рассмотрим химические свойства эфиров. Простые эфиры имеют низкую реакционную способность, именно благодаря этому их часто применяют как растворители. Они реагируют только в экстремальных условиях, или с высокореакционными соединениями. В отличии от этеров, сложные эфиры более реакционноспособные. Они легко вступают в реакции гидролиза, омыления и др..

Реакция простых эфиров с галогеноводородами:

Большинство простых эфиров могут разлагаться под воздействием бромоводородной кислоти (HBr) с образованием алкилбромидов или при взаимодействии с иодоводородной кислотой (HI) с получениемалкилиодидов.

СН3-О-СН3 + НI = СН3-ОН + СН3I

СН3-ОН + НI = СН3I + Н2О

Образование оксониевых соединений:

Серная, иодная и др. сильные кислоты при взаимодействии с простыми эфирами, образуют оксониевые соединения – продукты соединения высшего порядка.

СН3-О-СН3 + HCl = (CH3)2О ∙ HCl

Взаимодействие простых эфиров с металлическим натрием:

При нагревании с основными металлами, например, металлическим натрием, простые эфиры расщепляются на алкоголяты и алкилнатрий.

СН3-О-СН3 + 2Na = СН3-ОNa + СН3-Na

Автоокисление простых эфиров:

В присутствии кислорода, простые эфиры медленно автоокисляются с образованием гидроперекиси идиалкил пероксида. Автоокисление является спонтанным окислением соединения в воздухе.

С2Н5-О-С2Н5 + О2 = СН3-СН(ООН)-О-С2Н5

Гидролиз сложных эфиров:

В кислой среде эстер гидролизует, образуя соответствующую кислоту и спирт.

СН3-СОО-С2Н5 = СН3-СООН + Н2О

Омыление сложных эфиров:

При повышенной температуре эстеры реагируют с водными растворами сильных оснований, таких как гидроксид натрия или калия, образуя соли карбоновых кислот. Соли жрных карбоновых кислот называют мылами. Побочным продуктом реакции омыления является спирт.

СН3-СОО-С2Н5 + NaОН = СН3-СООNa + С2Н5-ОН

Реакции переэстерефикации (обмена):

Сложные эфиры вступают в реакции обмена при действии спирта (алкоголиз), кислоты (ацидолиз), или при двойном обмене, при взаимодействии двух сложных эфиров.

СН3-СОО-С2Н5 + С3Н7-ОН = СН3-СОО-С3Н7 + С2Н5-ОН

СН3-СОО-С2Н5 + С3Н7-СООН = С3Н7-СОО-С2Н5 + СН3-СООН

СН3-СОО-С2Н5 + С3Н7-СОО-СН3 = СН3-СОО-СН3 + С3Н7-СОО-С2Н5

Реакции взаимодействия с аммиаком:

Сложные эфиры могут взаимодействовать с аммиаком (NН3) с образованием амида и спирта. По тому же принципу реагируют они и с аминами.

СН3-СОО-С2Н5 + NН3 = СН3-СО-NН2 + С2Н5-ОН

Реакции восстановления эстеров:

Эфиры могут быть восстановлены водородом (Н2) в присутствии хромита меди (Cu(CrO2)2).

СН3-СОО-С2Н5 + 2Н2 = СН3-СН2-ОН + С2Н5-ОН

Производные карбоновых или неорганических кислот, в которых атом водорода в гидроксильной группе замещён радикалом, называются сложными эфирами. Обычно общую формулу сложных эфиров обозначают как два углеводородных радикала, присоединённых к карбоксильной группе - C n H 2n+1 -COO-C n H 2n+1 или R-COOR’.

Номенклатура

Названия сложных эфиров составляются из названий радикала и кислоты с суффиксом «-ат». Например:

  • CH 3 COOH - метилформиат;
  • HCOOCH 3 - этилформиат;
  • CH 3 COOC 4 H 9 - бутилацетат;
  • CH 3 -CH 2 -COO-C 4 H 9 - бутилпропионат;
  • CH 3 -SO 4 -CH 3 - диметилсульфат.

Также используются тривиальные названия кислоты, входящей в состав соединения:

  • С 3 Н 7 СООС 5 Н 11 - амиловый эфир масляной кислоты;
  • HCOOCH 3 - метиловый эфир муравьиной кислоты;
  • CH 3 -COO-CH 2 -CH(CH 3) 2 - изобутиловый эфир уксусной кислоты.

Рис. 1. Структурные формулы сложных эфиров с названиями.

Классификация

В зависимости от происхождения сложные эфиры делятся на две группы:

  • эфиры карбоновых кислот - содержат углеводородные радикалы;
  • эфиры неорганических кислот - включают остаток минеральных солей (C 2 H 5 OSO 2 OH, (CH 3 O)P(O)(OH) 2 , C 2 H 5 ONO).

Наиболее разнообразны сложные эфиры карбоновых кислот. От сложности строения зависят их физические свойства. Эфиры низших карбоновых кислот - летучие жидкости с приятным ароматом, высших - твёрдые вещества. Это плохо растворимые соединения, плавающие на поверхности воды.

Виды сложных эфиров карбоновых кислот приведены в таблице.

Вид

Описание

Примеры

Фруктовые эфиры

Жидкости, молекулы которых включают не более восьми атомов углерода. Обладают фруктовым ароматом. Состоят из одноатомных спиртов и карбоновых кислот

  • CH 3 -COO-CH 2 -CH 2 -CH(CH 3) 2 - изоамиловый эфир уксусной кислоты (запах груши);
  • C 3 H 7 -COO-C 2 H 5 - этиловый эфир масляной кислоты (запах ананаса);
  • CH 3 -COO-CH 2 -CH-(CH 3) 2 - изобутиловый эфир уксусной кислоты (запах банана).

Жидкие (масла) и твёрдые вещества, содержащие от девяти до 19 атомов углерода. Состоят из глицерина и остатков карбоновых (жирных) кислот

Оливковое масло - смесь глицерина с остатками пальмитиновой, стеариновой, олеиновой, линолевой кислот

Твёрдые вещества с 15-45 атомами углерода

CH 3 (CH 2) 14 -CO-O-(CH 2) 29 CH 3 -мирицилпальмитат

Рис. 2. Воск.

Сложные эфиры карбоновых кислот - главная составляющая ароматных эфирных масел, которые содержатся в плодах, цветах, ягодах. Также входят в состав пчелиного воска.

Рис. 3. Эфирные масла.

Получение

Получают сложные эфиры несколькими способами:

  • реакцией этерификации карбоновых кислот со спиртами:

    CH 3 COOH + C 2 H 5 OH → CH 3 COOC 2 H 5 + H 2 O;

  • реакцией ангидридов карбоновых кислот со спиртами:

    (CH 3 CO) 2 O + 2C 2 H 5 OH → 2CH 3 COOC 2 H 5 + H 2 O;

  • реакцией солей карбоновых кислот с галогенуглеводородами:

    CH 3 (CH 2) 10 COONa + CH 3 Cl → CH 3 (CH 2) 10 COOCH 3 + NaCl;

  • реакцией присоединения карбоновых кислот к алкенам:

    CH 3 COOH + CH 2 =CH 2 → CH 3 COOCH 2 CH 3 + H 2 O.

Свойства

Химические свойства сложных эфиров обусловлены функциональной группой -COOH. Основные свойства сложных эфиров описаны в таблице.

Сложные эфиры используются в косметологии, медицине, пищевой промышленности в качестве ароматизаторов, растворителей, наполнителей.

Что мы узнали?

Из темы урока химии 10 класса узнали, что такое сложные эфиры. Это соединения, включающие два радикала и карбоксильную группу. В зависимости от происхождения могут содержать остатки минеральных или карбоновых кислот. Сложные эфиры карбоновых кислот делятся на три группы: жиры, воски, фруктовые эфиры. Это плохо растворимые в воде вещества с небольшой плотностью и приятным ароматом. Сложные эфиры реагируют со щелочами, водой, галогенами, спиртами и аммиаком.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 88.

Простые эфиры (окиси алканов) можно представить как соединения, образованные замещением обоих атомов водорода молекулы воды двумя алкильными радикалами или замещением гидроксильного спирта алкильным радикалом.

Изомерия и номенклатура. Общая формула простых эфировROR(I) ((C n H 2 n +1) 2 O) илиC n H 2 n +1 OC k H 2 k +1 , гдеnk(R 1 OR 2) (II). Последние часто называют смешанными эфирами, хотя (I) частный случай (II).

Простые эфиры изомерны спиртам (изомерия функциональной группы). Приведем примеры таких соединений:

Н 3 СОСН 3 диметиловый эфир; С 2 Н 5 ОН этиловый спирт;

Н 5 С 2 ОС 2 Н 5 диэтиловый эфир; С 4 Н 9 ОН бутиловый спирт;

Н 5 С 2 ОС 3 Н 7 этилпропиловый эфир; С 5 Н 11 ОН амиловый спирт.

Кроме того, для простых эфиров распространена изомерия углеродного скелета (метилпропиловый эфир и метилизопропиловый эфир). Оптически активные эфиры немногочисленны.

Способы получения простых эфиров

1. Взаимодействие галогенпроизводных с алкоголятами (реакция Вильямсона).

С 2 Н 5 ОNa+IC 2 H 5 Н 5 С 2 ОС 2 Н 5 +NaI

2. Дегидратация спиртов в присутствии ионов водорода как катализаторов.

2С 2 Н 5 ОHН 5 С 2 ОС 2 Н 5

3. Частная реакция получения диэтилового эфира.

Первая стадия:

Вторая стадия:

Физические свойства простых эфиров

Два первых простейших представителя – диметиловый и метилэтиловый эфиры – при обычных условиях газы, все остальные – жидкости. Их Т кип много ниже, чем соответствующих спиртов. Так, температура кипения этанола – 78,3С, а Н 3 СОСН 3 – 24С, соответственно (С 2 Н 5) 2 О – 35,6С. Дело в том, что простые эфиры не способны к образованию молекулярных водородных связей, а, следовательно, и к ассоциации молекул.

Химические свойства простых эфиров

1. Взаимодействие с кислотами.

(С 2 Н 5) 2 О +HCl[(С 2 Н 5) 2 ОH + ]Cl  .

Эфир играет роль основания.

2. Ацидолиз – взаимодействие с сильными кислотами.

Н 5 С 2 ОС 2 Н 5 + 2H 2 SO 4 2С 2 Н 5 OSO 3 H

этилсерная кислота

Н 5 С 2 ОС 2 Н 5 +HIС 2 Н 5 OH+ С 2 Н 5 I

3. Взаимодействие со щелочными металлами.

Н 5 С 2 ОС 2 Н 5 + 2NaС 2 Н 5 ONa+ С 2 Н 5 Na

Отдельные представители

Этиловый эфир (диэтиловый эфир) – бецветная прозрачная жидкость, малорастворимая в воде. С этиловым спиртом смешивается в любых отношениях. Т пл =116,3С, давление насыщенного пара 2,6610 4 Па (2,2С) и 5,3210 4 Па (17,9С). Криоскопическая константа 1,79, эбулиоскопическая –1,84. Температура воспламенения – 9,4С, образует с воздухом взрывоопасную смесь при 1,71 об. % (нижний предел) – 48,0 об. % (верхний предел). Вызывает набухание резин. Широко применяется в качестве растворителя, в медицине (ингаляционный наркоз), вызывает привыкание человека, ядовит.

Сложные эфиры карбоновых кислот Получение сложных эфиров карбоновых кислот

1. Этерификация кислот спиртами.

Гидроксил кислоты выделяется в составе воды, спирт же отдает лишь атом водорода. Реакция обратима, те же катионы катализируют и обратную реакцию.

2. Взаимодействие ангидридов кислот со спиртами.

3. Взаимодействие галогенангидридов со спиртами.

Некоторые физические свойства сложных эфиров приведены в табли- це 12.

Таблица 12

Некоторые физические свойства ряда сложных эфиров

Строение радикала

Название

Плотность

метилформиат

этилформиат

метилацетат

этилацетат

н-пропилацетат

н-бутилацетат

Сложные эфиры низших карбоновых кислот и простейших спиртов – жидкости с освежающим фруктовым запахом. Употребляются как отдушки для приготовления напитков. Многие эфиры (уксусноэтиловый, уксуснобутиловый) широко применяются как растворители, особенно лаков.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

Применение сложных эфиров.

Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

– класс соединений на основе минеральных (неорганических) или органических карбоновых кислот, у которых атом водорода в НО-группе замещен органической группой R . Прилагательное «сложные» в названии эфиров помогает отличить их от соединений, именуемых простыми эфирами.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров. Название создается следующим образом: вначале указывается группа R , присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров. Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии ).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный
При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов

ROH , все жиры представляют собой сложные эфиры, спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров. Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами

RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка. Применение сложных эфиров. Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

ЛИТЕРАТУРА Карцова А.А. Покорение вещества. Органическая химия . Издательство Химиздат, 1999
Пустовалова Л.М. Органическая химия . Феникс, 2003

Публикации по теме