Graficul funcției y este egal cu 2. Grafice și proprietăți de bază ale funcțiilor elementare

Una dintre cele mai cunoscute funcții exponențiale din matematică este exponentul. Reprezintă numărul Euler ridicat la puterea specificată. În Excel există un operator separat care vă permite să îl calculați. Să vedem cum poate fi folosit în practică.

Exponentul este numărul Euler ridicat la o putere dată. Numărul Euler în sine este de aproximativ 2,718281828. Uneori este numit și numărul Napier. Funcția exponent arată astfel:

unde e este numărul Euler și n este gradul de ridicare.

Pentru a calcula acest indicator în Excel, se folosește un operator separat - EXP. În plus, această funcție poate fi afișată sub formă de grafic. Vom vorbi în continuare despre lucrul cu aceste instrumente.

Metoda 1: Calculați exponentul introducând manual funcția

EXP(număr)

Adică această formulă conține un singur argument. Este tocmai puterea la care trebuie ridicat numărul Euler. Acest argument ar putea fi de formă valoare numerică, și ia forma unei referințe la o celulă care conține un exponent.


Metoda 2: Utilizarea Expertului Funcție

Deși sintaxa pentru calcularea exponentului este extrem de simplă, unii utilizatori preferă să o folosească Expertul de funcții. Să vedem cum se face acest lucru cu un exemplu.


Dacă o referință de celulă care conține un exponent este folosită ca argument, atunci trebuie să plasați cursorul în câmp "Număr"și pur și simplu selectați acea celulă de pe foaie. Coordonatele sale vor fi afișate imediat în câmp. După aceasta, pentru a calcula rezultatul, faceți clic pe butonul "BINE".

Metoda 3: complot

În plus, în Excel este posibil să construiți un grafic folosind ca bază rezultatele obținute din calcularea exponentului. Pentru a construi un grafic, foaia trebuie să aibă deja valori calculate ale exponentului diferitelor puteri. Ele pot fi calculate folosind una dintre metodele descrise mai sus.

1. Funcția liniară fracțională și graficul acesteia

O funcție de forma y = P(x) / Q(x), unde P(x) și Q(x) sunt polinoame, se numește funcție rațională fracțională.

Probabil că ești deja familiarizat cu conceptul de numere raționale. De asemenea funcții raționale sunt funcții care pot fi reprezentate ca câtul a două polinoame.

Dacă o funcție rațională fracțională este câtul a două funcții liniare - polinoame de gradul I, i.e. functia formei

y = (ax + b) / (cx + d), atunci se numește liniar fracționar.

Rețineți că în funcția y = (ax + b) / (cx + d), c ≠ 0 (în caz contrar, funcția devine liniară y = ax/d + b/d) și că a/c ≠ b/d (în caz contrar, funcția este constantă). Funcția fracțională liniară este definită pentru toate numerele reale, cu excepția x = -d/c. Graficele funcțiilor liniare fracționale nu diferă ca formă de graficul y = 1/x pe care îl cunoașteți. Se numește o curbă care este un grafic al funcției y = 1/x hiperbolă. Cu o creștere nelimitată a lui x în valoare absolută, funcția y = 1/x scade nelimitat în valoare absolută și ambele ramuri ale graficului se apropie de abscisă: cea dreaptă se apropie de sus, iar cea stângă de jos. Liniile de care se apropie ramurile unei hiperbole se numesc ei asimptote.

Exemplul 1.

y = (2x + 1) / (x – 3).

Soluţie.

Să selectăm întreaga parte: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Acum este ușor de observat că graficul acestei funcții se obține din graficul funcției y = 1/x prin următoarele transformări: deplasare cu 3 segmente unitare la dreapta, întinzându-se de-a lungul axei Oy de 7 ori și deplasând cu 2 segmente de unitate în sus.

Orice fracție y = (ax + b) / (cx + d) poate fi scrisă într-un mod similar, evidențiind „întreaga parte”. În consecință, graficele tuturor funcțiilor liniare fracționale sunt hiperbole, deplasate în diferite moduri de-a lungul axelor de coordonate și întinse de-a lungul axei Oy.

Pentru a construi un grafic al oricărei funcție liniară fracțională arbitrară, nu este deloc necesar să se transforme fracția care definește această funcție. Deoarece știm că graficul este o hiperbolă, va fi suficient să găsim liniile drepte de care se apropie ramurile sale - asimptotele hiperbolei x = -d/c și y = a/c.

Exemplul 2.

Aflați asimptotele graficului funcției y = (3x + 5)/(2x + 2).

Soluţie.

Funcția nu este definită, la x = -1. Aceasta înseamnă că linia dreaptă x = -1 servește ca asimptotă verticală. Pentru a găsi asimptota orizontală, să aflăm ce se apropie de valorile funcției y(x) atunci când argumentul x crește în valoare absolută.

Pentru a face acest lucru, împărțiți numărătorul și numitorul fracției la x:

y = (3 + 5/x) / (2 + 2/x).

Ca x → ∞ fracția va tinde spre 3/2. Aceasta înseamnă că asimptota orizontală este linia dreaptă y = 3/2.

Exemplul 3.

Reprezentați grafic funcția y = (2x + 1)/(x + 1).

Soluţie.

Să selectăm „întreaga parte” a fracției:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Acum este ușor de observat că graficul acestei funcții se obține din graficul funcției y = 1/x prin următoarele transformări: o deplasare cu 1 unitate la stânga, o afișare simetrică față de Ox și o deplasare cu 2 segmente de unitate în sus de-a lungul axei Oy.

Domeniul D(y) = (-∞; -1)ᴗ(-1; +∞).

Interval de valori E(y) = (-∞; 2)ᴗ(2; +∞).

Puncte de intersecție cu axele: c Oy: (0; 1); c Ox: (-1/2; 0). Funcția crește la fiecare interval al domeniului de definiție.

Răspuns: Figura 1.

2. Funcția rațională fracțională

Se consideră o funcție rațională fracțională de forma y = P(x) / Q(x), unde P(x) și Q(x) sunt polinoame de grad mai mare decât primul.

Exemple de astfel de funcții raționale:

y = (x 3 – 5x + 6) / (x 7 – 6) sau y = (x – 2) 2 (x + 1) / (x 2 + 3).

Dacă funcția y = P(x) / Q(x) reprezintă câtul a două polinoame de grad mai mare decât primul, atunci graficul său va fi, de regulă, mai complex și uneori poate fi dificil să îl construiți cu acuratețe , cu toate detaliile. Cu toate acestea, este adesea suficient să folosiți tehnici similare cu cele pe care le-am introdus deja mai sus.

Fie fracția o fracție proprie (n< m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

În mod evident, graficul unei funcții raționale fracționale poate fi obținut ca sumă de grafice ale fracțiilor elementare.

Trasarea graficelor de funcții raționale fracționale

Să luăm în considerare mai multe moduri de a construi grafice ale unei funcții raționale fracționale.

Exemplul 4.

Desenați un grafic al funcției y = 1/x 2 .

Soluţie.

Folosim graficul funcției y = x 2 pentru a construi un grafic al lui y = 1/x 2 și folosim tehnica „împărțirii” graficelor.

Domeniul D(y) = (-∞; 0)ᴗ(0; +∞).

Interval de valori E(y) = (0; +∞).

Nu există puncte de intersecție cu axele. Funcția este uniformă. Crește pentru tot x din intervalul (-∞; 0), scade pentru x de la 0 la +∞.

Răspuns: Figura 2.

Exemplul 5.

Reprezentați grafic funcția y = (x 2 – 4x + 3) / (9 – 3x).

Soluţie.

Domeniul D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/ 3 + 1/3.

Aici am folosit tehnica factorizării, reducerii și reducerii la o funcție liniară.

Răspuns: Figura 3.

Exemplul 6.

Reprezentați grafic funcția y = (x 2 – 1)/(x 2 + 1).

Soluţie.

Domeniul de definiție este D(y) = R. Deoarece funcția este pară, graficul este simetric față de ordonată. Înainte de a construi un grafic, să transformăm din nou expresia, evidențiind întreaga parte:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Rețineți că izolarea părții întregi în formula unei funcții raționale fracționale este una dintre cele mai importante atunci când construiți grafice.

Dacă x → ​​±∞, atunci y → 1, adică. linia dreaptă y = 1 este o asimptotă orizontală.

Răspuns: Figura 4.

Exemplul 7.

Să luăm în considerare funcția y = x/(x 2 + 1) și să încercăm să găsim cu exactitate cea mai mare valoare a acesteia, i.e. cel mai mult punctul culminant jumătatea dreaptă a graficului. Pentru a construi cu acuratețe acest grafic, cunoștințele de astăzi nu sunt suficiente. Evident, curba noastră nu se poate „crește” foarte sus, pentru că numitorul începe rapid să „depășească” numărătorul. Să vedem dacă valoarea funcției poate fi egală cu 1. Pentru a face acest lucru, trebuie să rezolvăm ecuația x 2 + 1 = x, x 2 – x + 1 = 0. Această ecuație nu are rădăcini reale. Aceasta înseamnă că presupunerea noastră este incorectă. Pentru a găsi cele mai multe mare valoare funcție, trebuie să aflați la ce mai mare A va avea o soluție ecuația A = x/(x 2 + 1). Să înlocuim ecuația inițială cu una pătratică: Ax 2 – x + A = 0. Această ecuație are soluție când 1 – 4A 2 ≥ 0. De aici găsim cea mai mare valoare A = 1/2.

Răspuns: Figura 5, max y(x) = ½.

Mai ai întrebări? Nu știi cum să grafici funcții?
Pentru a obține ajutor de la un tutor, înregistrați-vă.
Prima lecție este gratuită!

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursa originală.

Funcția de construire

Oferim atentiei dumneavoastra un serviciu de realizare online a graficelor de functii, toate drepturile la care apartin companiei Desmos. Utilizați coloana din stânga pentru a introduce funcții. Puteți introduce manual sau folosind tastatura virtuală din partea de jos a ferestrei. Pentru a mări fereastra cu graficul, puteți ascunde atât coloana din stânga, cât și tastatura virtuală.

Beneficiile graficelor online

  • Afișarea vizuală a funcțiilor introduse
  • Construirea de grafice foarte complexe
  • Construcția graficelor specificate implicit (de exemplu, elipsa x^2/9+y^2/16=1)
  • Posibilitatea de a salva diagrame și de a primi un link către ele, care devine disponibil pentru toată lumea pe Internet
  • Controlul scalei, culoarea liniei
  • Posibilitatea de a trasa grafice pe puncte, folosind constante
  • Trasarea mai multor grafice de funcții simultan
  • Trasarea în coordonate polare (utilizați r și θ(\theta))

Cu noi este ușor să construiți grafice de complexitate variată online. Construcția se face instantaneu. Serviciul este solicitat pentru găsirea punctelor de intersecție ale funcțiilor, pentru reprezentarea graficelor pentru a le muta în continuare într-un document Word ca ilustrații atunci când rezolvați probleme și pentru analiza caracteristicilor comportamentale ale graficelor de funcții. Browserul optim pentru lucrul cu diagrame de pe această pagină a site-ului este Google Chrome. Funcționarea corectă nu este garantată atunci când utilizați alte browsere.

y (x) = e x, a cărei derivată este egală cu funcția însăși.

Exponentul este notat ca , sau .

Numărul e

Baza gradului de exponent este numărul e. Acesta este un număr irațional. Este aproximativ egal
e ≈ 2,718281828459045...

Numărul e este determinat prin limita secvenței. Acesta este așa-numitul a doua limită minunată:
.

Numărul e poate fi reprezentat și ca o serie:
.

Graficul exponențial

Grafic exponențial, y = e x .

Graficul arată exponentul eîntr-o măsură X.
y (x) = e x
Graficul arată că exponentul crește monoton.

Formule

Formulele de bază sunt aceleași ca pentru funcţie exponenţială cu bază de putere e.

;
;
;

Exprimarea unei funcții exponențiale cu o bază arbitrară de gradul a printr-o exponențială:
.

Valori private

Lasă y (x) = e x.
.

Apoi

Proprietățile exponentului e > 1 .

Exponentul are proprietățile unei funcții exponențiale cu o bază de putere

Domeniu, set de valori (x) = e x Exponentul y
definit pentru toate x.
- ∞ < x + ∞ .
Domeniul său de definiție:
0 < y < + ∞ .

Multele sale semnificații:

Extreme, în creștere, în scădere

Exponențialul este o funcție crescătoare monoton, deci nu are extreme. Principalele sale proprietăți sunt prezentate în tabel.

Funcția inversă
;
.

Inversa exponentului este logaritmul natural.

Derivată a exponentului eîntr-o măsură X Derivat eîntr-o măsură X :
.
egal cu
.
Derivată de ordin al n-lea:

Integral

Numerele complexe

Acțiuni cu numere complexe efectuat folosind formulele lui Euler:
,
unde este unitatea imaginară:
.

Expresii prin funcții hiperbolice

; ;
.

Expresii folosind funcții trigonometrice

; ;
;
.

Extinderea seriei de putere

Literatura folosita:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți, „Lan”, 2009.

Un grafic al funcției este o reprezentare vizuală a comportamentului unei funcții pe un plan de coordonate. Graficele vă ajută să înțelegeți diferite aspecte ale unei funcții care nu pot fi determinate din funcția în sine. Puteți construi grafice cu mai multe funcții și fiecare dintre ele va primi o formulă specifică. Graficul oricărei funcții este construit folosind un algoritm specific (în cazul în care ați uitat procesul exact de reprezentare grafică a unei anumite funcții).

Pași

Reprezentarea grafică a unei funcții liniare

    Determinați dacă funcția este liniară. Funcția liniară este dată de o formulă de formă F (x) = k x + b (\displaystyle F(x)=kx+b) sau y = k x + b (\displaystyle y=kx+b)(de exemplu, ), iar graficul său este o linie dreaptă. Astfel, formula include o variabilă și o constantă (constantă) fără exponenți, semne de rădăcină sau altele asemenea. Dacă este dată o funcție de un tip similar, este destul de simplu să reprezentați graficul unei astfel de funcție. Iată și alte exemple de funcții liniare:

    Utilizați o constantă pentru a marca un punct pe axa Y. Constanta (b) este coordonata „y” a punctului în care graficul intersectează axa Y Adică este un punct a cărui coordonată „x” este egală cu 0. Astfel, dacă x = 0 este înlocuit în formulă. , atunci y = b (constant). În exemplul nostru y = 2 x + 5 (\displaystyle y=2x+5) constanta este egală cu 5, adică punctul de intersecție cu axa Y are coordonatele (0,5). Trasează acest punct pe planul de coordonate.

    Aflați panta dreptei. Este egal cu multiplicatorul variabilei. În exemplul nostru y = 2 x + 5 (\displaystyle y=2x+5) cu variabila „x” există un factor de 2; astfel, coeficientul de panta este egal cu 2. Coeficientul de panta determina unghiul de inclinare al dreptei fata de axa X, adica cu cat coeficientul de panta este mai mare, cu atat functia creste sau scade mai repede.

    Scrieți panta ca o fracție. Coeficientul unghiular este egal cu tangenta unghiului de înclinare, adică raportul dintre distanța verticală (între două puncte pe o linie dreaptă) și distanța orizontală (între aceleași puncte). În exemplul nostru, panta este 2, deci putem afirma că distanța verticală este 2 și distanța orizontală este 1. Scrieți aceasta ca o fracție: 2 1 (\displaystyle (\frac (2)(1))).

    • Dacă panta este negativă, funcția este descrescătoare.
  1. Din punctul în care linia dreaptă intersectează axa Y, trasați un al doilea punct folosind distanțe verticale și orizontale.

    O funcție liniară poate fi reprezentată grafic folosind două puncte. În exemplul nostru, punctul de intersecție cu axa Y are coordonatele (0,5); Din acest punct, mutați 2 spații în sus și apoi 1 spațiu spre dreapta. Marcați un punct; va avea coordonatele (1,7). Acum puteți trage o linie dreaptă. Folosind o riglă, trageți o linie dreaptă prin două puncte.

    Pentru a evita greșelile, găsiți al treilea punct, dar în cele mai multe cazuri graficul poate fi reprezentat folosind două puncte. Astfel, ați trasat o funcție liniară.

    1. Trasarea punctelor pe planul de coordonate Definiți o funcție.

      Funcția se notează ca f(x). Toate valorile posibile ale variabilei „y” sunt numite domeniul funcției, iar toate valorile posibile ale variabilei „x” sunt numite domeniul funcției. De exemplu, luăm în considerare funcția y = x+2, și anume f(x) = x+2. Desenați două drepte perpendiculare care se intersectează.

      Linia orizontală este axa X. Linia verticală este axa Y. Etichetați axele de coordonate.

      Împărțiți fiecare axă în segmente egale și numerotați-le. Punctul de intersecție al axelor este 0. Pentru axa X: numerele pozitive sunt trasate la dreapta (de la 0), iar numerele negative la stânga. Pentru axa Y: numerele pozitive sunt trasate în partea de sus (de la 0), iar numerele negative în partea de jos. Găsiți valorile lui „y” din valorile lui „x”.

      • -1: -1 + 2 = 1
      • 0: 0 +2 = 2
      • 1: 1 + 2 = 3
    2. În exemplul nostru, f(x) = x+2. Înlocuiți valorile x specifice în această formulă pentru a calcula valorile y corespunzătoare. Dacă i se oferă o funcție complexă, simplificați-o prin izolarea „y” de pe o parte a ecuației. Trasează punctele pe planul de coordonate.

      Pentru fiecare pereche de coordonate, procedați în felul următor: găsiți valoarea corespunzătoare pe axa X și trasați o linie verticală (punctată); găsiți valoarea corespunzătoare pe axa Y și trasați o linie orizontală (linie întreruptă). Marcați punctul de intersecție al celor două linii punctate; astfel, ați trasat un punct pe grafic.Ștergeți liniile punctate.

    Faceți acest lucru după ce ați trasat toate punctele de pe grafic pe planul de coordonate. Notă: graficul funcției f(x) = x este o dreaptă care trece prin centrul de coordonate [punct cu coordonatele (0,0)]; graficul f(x) = x + 2 este o dreaptă paralelă cu dreapta f(x) = x, dar deplasată în sus cu două unități și, prin urmare, trece prin punctul cu coordonatele (0,2) (deoarece constanta este 2) .

      Reprezentarea grafică a unei funcții complexe Zerurile unei funcții sunt valorile variabilei x unde y = 0, adică acestea sunt punctele în care graficul intersectează axa X. Rețineți că nu toate funcțiile au zero, dar sunt primele pas în procesul de reprezentare grafică a oricărei funcții. Pentru a găsi zerourile unei funcții, echivalează-o cu zero. De exemplu:

      Găsiți și marcați asimptotele orizontale. O asimptotă este o linie de care graficul unei funcții se apropie, dar nu se intersectează niciodată (adică în această regiune funcția nu este definită, de exemplu, la împărțirea la 0). Marcați asimptota cu o linie punctată. Dacă variabila „x” se află la numitorul unei fracții (de exemplu, y = 1 4 − x 2 (\displaystyle y=(\frac (1)(4-x^(2))))), setați numitorul la zero și găsiți „x”. În valorile obținute ale variabilei „x” funcția nu este definită (în exemplul nostru, trageți linii punctate prin x = 2 și x = -2), deoarece nu puteți împărți la 0. Dar asimptotele există nu numai în cazurile în care funcția conține o expresie fracțională. Prin urmare, se recomandă utilizarea bunului simț:



Publicații pe această temă