Какие горы расположены в альпийско гималайском поясе. Сейсмические пояса земли

В этой статье мы расскажем вам о Альпийско-Гималайском сейсмическом поясе, ведь вся история формирования ландшафта планеты Земля связана с теорией и сопровождающими это движения сейсмическими и вулканическими проявления, вследствие которых и сформировался существующий ныне рельеф земной коры… Рельефообразующие движения тектонических плит сопровождаются нарушениями сплошного поля земной коры, которые приводят к образованию в ней тектонических разломов и вертикальных горных хребтов. Такие разрывные процессы, происходящие в земной коре - носят название сбросы и надвиги, соответственно приводящие к образованию горстов и грабенов. Движение тектонических плит в конечном итоге и приводят к интенсивным сейсмическим проявлениям и извержениям вулканов. Таких видов движения плит есть три:
1. Жёсткие подвижные тектонические плиты надвигаются друг на друга, образуя при этом горные хребты, как в океанах, так и на суше.
2. Соприкасающиеся тектонические плиты опускаются в мантию, образуя в земной коре тектонические желоба.
3. Двигающиеся тектонические плиты скользят между собой, образуя при этом трансформные разломы.
С линией контакта двигающихся тектонических плит примерно совпадают и пояса максимальной сейсмической активности планеты. Таких основных поясов выделено два:
1. Альпийско–Гималайский сейсмический пояс
2. Тихоокеанский сейсмический пояс.

Ниже остановимся на Альпийско – Гималайском сейсмическом поясе, который простирается полосой от горных структур Испании до Памира, включая в себя горы Франции, горные сооружения центра и юга Европы, её юго-востока и далее – Карпаты, горы Кавказа и Памира, а также горные проявления Ирана, севера Индии, Турции и Бирмы. В указанной полосе активного проявления тектонических процессов и происходит большинство катастрофических землетрясений, приносящих странам, попадающих в зону Альпийско – Гималайского сейсмического пояса, неисчислимые бедствия. Это и катастрофические разрушения в населённых пунктах, многочисленные человеческие жертвы, нарушения транспортной инфраструктуры и прочее… Так в Китае, в 1566 году произошло мощнейшее землетрясение в провинциях Ганьсу и Шэньси. Во время этого землетрясения погибло более 800 тысяч человек, а многие города были стёрты с лица земли. Калькутта в Индии, 1737 год – погибло около 400 тысяч человек. 1948 год – Ашхабад (Туркмения, СССР). Погибших - более 100 тысяч. 1988 год, Армения (СССР), города Спитак и Ленинакан разрушены до основания. Погибло 25 тысяч человек. Можно перечислить и другие достаточно мощные землетрясения в Турции, Иране, Румынии, сопровождавшиеся большими разрушениями и человеческими жертвами. Почти ежедневно сейсмические службы мониторинга регистрируют более слабые землетрясения по всему Альпийско–Гималайскому сейсмическому поясу . Они свидетельствуют о том, что тектонические процессы в этих районах не прекращаются ни на минуту, движение тектонических плит тоже не прекращается, а после очередного мощного землетрясения и очередного сброса напряжения земной коры, оно опять нарастает до критической точки, в которой, рано или поздно - неизбежно произойдёт очередная разрядка напряжённой земной коры, вызывающая землетрясение.
К сожалению, современная наука не может точно определять место и время очередного землетрясения. В активных сейсмических поясах земной коры они неизбежны, так как процесс движения тектонических плит непрерывный, а значит и непрерывное нарастание напряжённости в зонах соприкосновения движущихся платформ. С развитием цифровых технологий, с появлением супер мощных и сверхскоростных компьютерных комплексов, современная сейсмология все ближе будет подходить к тому, что она сможет производить математическое моделирование тектонических процессов в , что даст возможность предельно точно и достоверно определять точки очередного землетрясения. Это, в свою очередь – предоставит возможность человечеству готовиться к таким катастрофам и поможет избежать многочисленных человеческих жертв, а современные и перспективные строительные технологии сведут к минимуму разрушительные последствия мощных землетрясений. Следует отметить тот факт, что и другие активные сейсмические пояса на планете достаточно близко совпадают с поясами вулканической активности . Наукой доказано, что в большинстве случаев вулканическая активность прямо связана с сейсмической активностью. Как и землетрясения, повышенная вулканическая активность несёт прямую угрозу человеческой жизнедеятельности. Многие вулканы расположены в густонаселённых районах, с развитой промышленностью. Любое внезапное извержение вулканов несёт в себе опасность для людей, проживающих в зоне действия вулканов. Помимо перечисленного, землетрясения в океанах и морях приводят к возникновению цунами, которые не менее разрушительны для прибрежных зон, чем сами землетрясения. Именно по этой причине задача совершенствования методов сейсмического мониторинга активных сейсмических поясов - остаётся актуальной всегда.

Сейсмические пояса Земли представляют собой линии, по которым проходят границы между литосферными плитами. Если плиты движутся навстречу друг другу, то на стыках образуются горы (такие участки еще называют зонами горообразования). Если же литосферные плиты расходятся, то в этих местах появляются разломы. Естественно, такие процессы как схождение-расхождение литосферных плит не остаются без последствий – около 95% всех землетрясений и извержений вулканов происходит в этих областях. Именно поэтому они носят название сейсмических (с греческого seismos - сотрясать).

Принято выделять два основных сейсмических пояса: широтный Средиземноморско-Трансазиатский и перпендикулярный ему меридиональный Тихоокеанский. В данных двух областях происходит подавляющее большинство всех землетрясений. Если посмотреть на карту сейсмической опасности, то становится отчетливо видно, что зоны, выделенные красным и бордовым, находятся именно в месте расположения этих двух поясов. Они простираются на тысячи километров, огибая земной шар, пролегают на суше и под водой.

Практически 80% всех землетрясений и извержений вулканов приходятся на Тихоокеанский сейсмический пояс, иначе называемый Тихоокеанским огненным кольцом. Данная сейсмическая зона действительно, будто кольцом, обхватывает почти весь Тихий океан. Различают две ветви этого пояса – Восточную и Западную.

Восточная ветвь начинается от берегов Камчатки и идет по Алеутским островам, проходит через все западное побережье Северной и Южной Америк и заканчивается в районе Южно-Антильской петли. В этой области больше всего мощных землетрясений происходит на Калифорнийском полуострове, чем обусловлена архитектура таких городов, как Лос-Анджелес и Сан-Франциско – там преобладают дома высотой в один-два этажа с редкими многоэтажными строениями, в основном в центральных частях городов.

Западная ветвь Тихоокеанского огненного кольца тянется от Камчатки через Курильские острова, Японию и Филиппины, охватывает Индонезию и, огибая дугой Австралию, через Новую Зеландию доходит до самой Антарктиды. В этом районе происходит множество мощных подводных землетрясений, часто приводящих к катастрофическим цунами. Сильнее всего от землетрясений и цунами в этом регионе страдают такие островные государства, как Япония, Индонезия, Шри-Ланка и тд.

Средиземноморско-Трансазиатский пояс, как следует из его названия, простирается через все Средиземное море, включая в себя южно-европейские, северно-африканские и ближневосточные регионы. Далее он тянется практически через всю Азию, по хребтам Кавказа и Ирана до самых Гималаев, к Мьянме и Таиланду, где, по оценкам некоторых ученых, соединяется с сейсмической Тихоокеанской зоной.

По данным сейсмологов, на этот пояс приходится около 15% мировых землетрясений, при этом наиболее активными зонами Средиземноморско-Трансазиатского пояса принято считать Румынские Карпаты, Иран и восток Пакистана.

Второстепенные сейсмические пояса

Выделяют также и второстепенные зоны сейсмический активности. Второстепенными они считаются потому, что на их долю приходится лишь 5% всех землетрясений нашей планеты. Сейсмический пояс Атлантического океана начинается у берегов Гренландии, тянется вдоль всей Атлантики и находит свой конец возле островов Тристан-да-Кунья. Здесь не бывает сильных землетрясений, и благодаря отдаленности этой зоны от континентов подземные толчки в этом поясе не приносят разрушений.

Западная часть Индийского океана так же характеризуется своей собственной сейсмической зоной, и хотя она достаточно велика по длине (доходит своим южным концом до самой Антарктиды), землетрясения здесь не слишком сильны, а их очаги располагаются неглубоко под землей. Так же сейсмическая зона существует и в Арктике, но из-за практически полной безлюдности этих мест, а так же благодаря малой мощности подземных толчков, землетрясения в этом регионе не имеют особенного влияния на жизнь людей.

Самые мощные землетрясения 20-21 веков

Так как на Тихоокеанское огненное кольцо приходится до 80% всех землетрясений, то основные по своей мощности и разрушительности катаклизмы произошли именно в этом регионе. В первую очередь, стоит упомянуть Японию, которая не раз становилась жертвой сильнейших землетрясений. Самым разрушительным, хоть и не самым сильным по магнитуде своих колебаний, стало землетрясение 1923 года, которое носит название Великое землетрясение Канто. По разным оценкам, во время и от последствий данного бедствия погибло 174 тысячи человек, еще 545 тысяч так и не были найдены, общее число пострадавших оценивается в 4 миллиона человек. Самым сильным японским землетрясением (с магнитудой от 9,0 до 9,1) стало знаменитое бедствие 2011 года, когда мощное цунами, вызванное подводными толчками у берегов Японии, вызвало разрушения в приморских городах, а пожар на нефтехимическом комплексе в городе Сендай и авария на АЭС Фокусима-1 нанесли огромный ущерб как экономике самой страны, так и экологии всего мира.

Наиболее сильным из всех документально зарегистрированных землетрясений считается Великое Чилийское землетрясение с магнитудой до 9,5, которое произошло в 1960 году (если посмотреть на карте, то становится видно, что оно произошло так же в области Тихоокеанского сейсмического пояса). Бедствием, унесшим самое большое количество жизней в 21 веке, признано землетрясение в Индийском океане 2004 года, когда мощное цунами, являвшееся его последствием, унесло почти 300 тысяч жизней человек из почти 20 стран мира. На карте зона землетрясения относится к западной оконечности Тихоокеанского кольца.

В Средиземноморско-Трансазиатском сейсмическом поясе так же произошло множество крупных и разрушительных землетрясений. К одному из таких относится землетрясение 1976 года в Таншане, когда только по официальным данным КНР погибло 242 419 человек, однако по некоторым данным число жертв превышает 655 тысяч, что делает это землетрясение одним из самых смертельных в истории человечества.

Складчатый пояс, пересекающий Северо-Западную Африку и Евразию в широтном направлении от Атлантического океана до Южно-Китайского моря, отделяя южную группу древних платформ, до середины Юрского периода составлявшую суперконтинент Гондвану, от северной группы, составлявшей ранее континент Лавразия и Сибирскую платформу. На востоке Средиземноморский складчатый пояс сочленяется с западной ветвью Тихоокеанского геосинклинального пояса.

Средиземноморский пояс охватывает южные районы Европы и Средиземноморье, Магриб (Северо-Западную Африку), Малую Азию, Кавказ, Персидские горные системы, Памир, Гималаи, Тибет, Индокитай и Индонезийские острова. В средней и центральной части Азии он почти объединён с Урало-Монгольской геосинклинальной системой, а на западе близок к Северо-Атлантической системе.

  • Мезозоиды —
    • Индосинийская (Тибето-Малайская);
    • Западно-Туркменская (Небитдагская);
  • Альпиды —
    • Кавказская;
    • Крымская;
    • Балканская;
    • Центрально-Европейская;
    • Апеннинская;
    • Северо-Магрибская;
    • Ирано-Оманская;
    • Копетдаго-Эльбурсская;
    • Белуджистанская;
    • Афгано-Таджикская;
    • Памирская;
    • Гималайская;
    • Иравадийская;
    • Западно-Малайская

Примечания

Ссылки

ТЕМА 3ОБЩИЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ ОБЛАСТЕЙ АЛЬПИЙСКОЙ СКЛАДЧАТОСТИ(ГЕОЛОГИЯ БОЛЬШОГО КАВКАЗА, СКЛАДЧАТОЙ ОБЛАСТИ ВОСТОЧНЫХ КАРПАТ И ГОРНОГО КРЫМА)

Задание 4Схема структур альпийской складчатой области Большого Кавказа

Цель: составить схему структур складчатой области Большого Кавказа

План выполнения работы:

1 Легенда к схеме структур Большого Кавказа

2 Граница Большого Кавказа

3 Основные структурные элементы Большого Кавказа

Материалы:

  • литература:Короновский Н.В.

Краткий курс региональной геологии СССР. – Изд. Московского университета, 1984. – 334 с., Лазько Е.М. Региональная геология СССР. Том 1, Европейская часть и Кавказ. – М.:Недра, 1975.

– 333 с., конспект лекций по геологии Восточно-Европейской платформы.

Основные понятия по заданию

На севере граница между мегантиклинорием Большого Кавказа и Скифской плитой проводится по кровле меловых отложений. К югу от антиклинория находится Южный склон Большого Кавказа, представляющий собой альпийский геосинклинальный прогиб, сложенный отложениями нижней - верхней юры.

На схеме отображают следующие структурные элементы Большого Кавказа: Главный антиклинорий, Передовой хребет, Северо-Кавказская монокиналь, Южный склон Большого Кавказа, Рионский и Куринский прогибы, Дзирульский масив, Азербайджанская складчатая зона.

При выделении выше указанных структурных элементов Большого Кавказа необходимо учитывать следующие особенности.

В пределах Главного антиклинория на поверхность выходят породы докембрия, пронизанные мезозойскими и альпийскими, главным образом, гранитоидными интрузиями.

В структурах Передового хребта обнажаются отложения среднего, верхнего кембрия и силура, среднего, верхнего девона и нижнего карбона(палеозоя), прорванныеинтрузиями кислого, среднего и ультраосновного состава и молассоидная толща среднего, верхнего карбона и перми.

Северо-Кавказская монокиналь располагается севернее структур Главного антиклинория и Передового хребта.Ее чехол представлен отложениями юры и мела.

Южный склон Большого Кавказа находится к югу от антиклинория.

Он выполнен породами средней юры и мела.

Рионский и Куринский прогибы находятся между складчатыми сооруженнями Большого и Малого Кавказа.

Они оконтуриваются по кайнозойским отложениям.

Дзирульский масив разделяет Рионский и Куринский прогибы. Здесь на поверхность выходят рифейские и палеозойские породы с герцинскими и киммерийскими гранитами.

Азербайджанская складчатая зона находится в восточной части мегантиклинория и оконтуривается по отложениям плиоцена-антрпогена.

Ход работы

Задание 5Схема структур альпийских складчатых областей Восточных Карпат и Горного Крыма

Цель: составить схему структур Восточных Карпат и Горного Крыма

План выполнения работы:

1 Легенда к схеме структур складчатой системы Восточных Карпат

2 Граница складчатой системы Восточных Карпат

3 Основные структурные элементы Восточных Карпат

4 Граница складчатой системы Горного Крыма

Материалы:

  • Тектоническая карта Европы и смежных областей М 1:22500000, Геологическая карта СССР М 1:4000000, контурная карта Европы М 1:17000000 – 20000000;
  • тетрадь для практических занятий, простой мягкий карандаш, набор цветных карандашей, ластик, линейка;
  • литература:Короновский Н.В.

Краткий курс региональной геологии СССР. – Изд. Московского университета, 1984. – 334 с., Лазько Е.М. Региональная геология СССР. Том 1, Европейская часть и Кавказ. – М.:Недра, 1975. – 333 с., конспект лекций по геологии Восточно-Европейской платформы.

Основные понятия по заданию

Мегантиклинорий Восточных Карпат обладает хорошо выраженной продольной структурно-фациальной зональностью и надвиганием внутренних зон на внешние и последних на Предкарпатский краевой прогиб.

На схеме отображают следующие структурные элементы Восточных Карпат.Предкарпатский краевой прогиб, Скибовая зона, Мармарошский кристаллический масив, Зона Утесов,Закарпатский краевой прогиб.Кроме того, на схеме должна быть оконтурена складчатая область Горного Крыма.

При выделении выше указанных структурных элементов Восточных Карпат необходимо учитывать следующие особенности.

Предкарпатский краевой прогиб располагается на границе складчатого сооруження Восточных Карпат и Восточно-Европейской платформы.

Он выполнен миоценовыми отложеннями.

Скибовая зона является наиболее внешнейчастью Карпат.Она оконтуривается помеловым и палеогеновым отложениям.

Мармарошский кристаллический массив занимает внутреннее положение на крайнем юго-востоке.

В пределах Мармарошского массива обнажаются древнейшие протерозой-мезозойские породы. Отложения прорываются среднепалеозойскими гранитоидами. В покровном строении Мармарошского массива участвуют также верхнекаменноугольные, пермские, триасовые и юрские отложения, перекрытые отложениями верхнего мела и кайнозоя.

Мармарошский массив к северо-западу суживается и далее располагается Зона Утесов, которая выражена узкой, местами двойной полосой выходов триасовых, юрских и меловых отложений беспорядочно рассеянных среди меловых и палеогеновых пород.

С тыльной, внутренней, стороны горное сооруженне Карпат ограничено Закарпатским краевым прогибом. Он выполнен неогеновыми молассами.

При выделении складчатой области Горного Крыма необходимо учитывать, что границы ее простираются от г.

Севастополя на западе дог. Феодосии на востоке. Северная граница отделяет Горный Крым от структур Скифской плиты и проводится по кровле меловых отложений.

Ход работы , методика ее выполнения и оформления аналогична таковым в задании 1 и 2.

ТЕМА 4ОСНОВНЫЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ БЕЛАРУСИ

Задание 6Описать основные структуры территории Беларуси по картографическим материалам

Цель: Описать основные структуры территории Беларуси, выраженные вфундамента, используя картографические материалы

План описания структур:

1 Название структуры I порядка и выделенных в их составе структур IIпорядка.

2 Границы структуры I порядка.

3 Глубины залегания фундамента - минимальные и максимальные глубины в границах структуры Iпорядка, глубины залегания в пределах структур II порядка,характерные особенности залегания поверхности фундамента.

4 Время и обусловленность формирования структуры.

6 Характеристика основных разрывных нарушений, ограничивающих структурыI порядкаи разделяющих структуры IIпорядка (ранг, время формирования, расположение, протяженность, ширина зоны влияния, вертикальная амплитуда, очертания в плане, активность на современном этапе).

7 Структурные комплексы и этажи (название, распространение и породами каких формаций сложены).

Материалы:

  • тектонические карты БелоруссииМ 1:500000 и М 1: 1000000;
  • тетрадь для практических занятий
  • литература: Геология Беларуси: монография // Под ред.

А.С. Махнача – Минск, 2001. – 814 с., Разломы земной коры Беларуси: монография // Под ред Р.Е. Айзберга. Минск: Красико-Принт, 2007. - 372 с., СТБ Условные обозначения к картам геологического содержания (рабочий проект). – Минск: Минприроды, 2011.

– 53 с., конспект лекций по геологии Беларуси.

Индоло-кубанский прогиб

Cтраница 1

Индоло-Кубанский прогиб является предгорным.  

Миоцен-плиоценовые отложения Индоло-Кубанского прогиба включают в основном песчанистые пласты чакракско-караган-ского, сарматского, мэотического и понтического возраста, с которыми связано газонефтяное Анастасиевско-Троицкое месторождение. Промышленная нефтегазоносность месторождения выявлена в киммерийских, понтических, мэотических и сарматских отложениях.

Минерализация вод сарматских пород в Западном Предкавказье увеличивается с востока на запад, достигая максимума (60 г / л) в центральной части прогиба. При этом состав вод изменяется от сульфатно-натриевого до гидрокарбонатно-натриевого и хлоридно-кальциевого.  

В центральной части Индоло-Кубанского прогиба ниже поверхности среза — 4 5 км будут вскрыты скважинами палеоген нижненеогеновые отложения.

Восточно-Северское месторождение расположено на южном борту Индоло-Кубанского прогиба. Месторождение построено очень сложно и представляет собой антиклинальную складку в эоценовых и олиго-ценовых отложениях палеогена, погребенную под моноклинально залегающими отложениями неогена. Простирание структуры близко к широтному, складка асимметрична: северное крыло более крутое, чем южное.  

Анастасиевско-Троицкое газоконденсат нонефтяное месторождение расположено в Индоло-Кубанском прогибе.

Месторождение многопластовое, открыто в 1952 г. С киммерийским и понтическим горизонтами связаны залежи газа, с мэотическим — нефти.  

На фоне высокоминерализованных хлоридно-кальциевых вод мэоти-ческих отложений в центральной части Индоло-Кубанского прогиба наблюдается гидрохимический минимум в пределах Анастасиевско-Троицкой складки, связанный с внедрением слабоминерализованных вод из диапирового ядра.

Приведенные напоры вод снижаются с востока на запад от 400 до 160 м и обусловлены инфильтрационным режимом. В наиболее погруженной части Индоло-Кубанского прогиба в районе Анастасиевско-Троицкого месторождения в миоценовых отложениях существует элизионный режим и установлены обширные зоны АВПД.

АЛЬПИ́ЙСКО-ГИМАЛА́ЙСКИЙ ПОДВИ́ЖНЫЙ ПО́ЯС

Южная часть бассейна, прилегающая к Керченскому и Таманскому полуостровам, располагается в пределах Индоло-Кубанского прогиба испытывает интенсивное погружение. Мощность морских голоценовых осадков достигает здесь первых десятков метров.

Среди них преобладают глинистые и глинисто-алевритовые илы с различной по количеству примесью раковин моллюсков.  

Месторождение Широкая Балка — Веселая, открытое в 1937 г., расположено в пределах южного борта Индоло-Кубанского прогиба.

Здесь в отложениях среднего Майкопа выявлена полоса песчано-алеври-товых пород, в южной части которой заливообразные выступы образуют ряд литологических ловушек, заполненных нефтью. Одна из них называется Широкая Балка, другая — Веселая.

Они объединены общей полосой нефтеносности.  

Пояс Предка вка зек их передовых прогибов: I ] — Терско-Каспийский и Кусаро-Дивн — чинский прогибы; Ь — Индоло-Кубанский прогиб. III, Закавказский межгорный прогиб: III ] — Дзирульско-Окрнбская зона поднятий; Ш2 — предгорные прогибы Западной Грузии; Ш3 — Колхидский прогиб; Ш4 — Ку-ринская впадина; Ills — Апшероно-Кобыстанский прогиб.

Мегантиклинорий Малого Кавказа: IVi — Аджаро-Триалетская складчатая зона; IVa — Сомхето-Карабахский антиклинорий; IV3 — Севанский синклинорий; IV4 — Зангезур-Ордубадская зона; IVS — Армяно-Ахалкалакский вулканический щит; IVa — Араксинская впадина; IV.  

Новодмитриевское месторождение, открытое в 1951 г., расположено в пределах Калужского пояса погребенных антиклинальных складок, осложняющих южный борт Индоло-Кубанского прогиба, представляет собой антиклинальную складку почти широтного простирания (с отклонением на юго-восток), осложненную большим количеством дизъюнктивных нарушений.

Кроме рассмотренных Усть-Лабинского и Некрасовского месторождений в южной части Ейско-Березанской зоны поднятий, приуроченной к Усть-Ла — бинскому выступу фундамента, отделяющего Восточно-Кубанскую впадину от Индоло-Кубанского прогиба, расположены Двубратское, Ладожское месторождения.

В пределах Степного Крыма помимо Сивашской впадины другими основными тектоническими элементами являются: Новоселовско-Симферопольское поднятие палеозойского фундамента, которое на западе погружается в Альминскую впадину, а на востоке переходит в Индоло-Кубанский прогиб.  

Страницы:      1    2

Средиземномо́рский (Альпийско-Гималайский) скла́дчатый (геосинклина́льный) по́яс - складчатый пояс, пересекающий Северо-Западную Африку и Евразию в широтном направлении от Атлантического океана до Южно-Китайского моря, отделяя южную группу древних платформ, до середины Юрского периода составлявшую суперконтинент Гондвану, от северной группы, составлявшей ранее континент Лавразия и Сибирскую платформу.

На востоке Средиземноморский складчатый пояс сочленяется с западной ветвью Тихоокеанского геосинклинального пояса.

Средиземноморский пояс охватывает южные районы Европы и Средиземноморье, Магриб (Северо-Западную Африку), Малую Азию, Кавказ, Персидские горные системы, Памир, Гималаи, Тибет, Индокитай и Индонезийские острова.

Альпийско-Гималайский сейсмический пояс

В средней и центральной части Азии он почти объединён с Урало-Монгольской геосинклинальной системой, а на западе близок к Северо-Атлантической системе.

Пояс формировался в течение длительного времени, охватывающего период от докембрия до наших дней.

Средиземноморский геосинклинальный пояс включает 2 складчатые области (мезозоиды и альпиды), которые делятся на системы:

См.

Примечания

  1. Цейслер В.М., Караулов В.Б., Успенская Е.А., Чернова Е.С. Основы региональной геологии СССР. - М: Недра, 1984. - 358 с.

Ссылки

Складчатые пояса на карте мира

АЛЬПИЙСКО-ГИМАЛАЙСКИЙ ПОДВИЖНЫЙ ПОЯС охватывает территории Южной Европы, Северной Африки, Южной и Юго-Восточной Азии — от Гибралтарского пролива до Индонезии; протягивается в субширотном направлении на расстояние около 17 тысяч км.

Подразделяется на четыре ветви покровно-складчатых горных сооружений. 1-я — Пиренеи — Альпы — Карпаты — Балканиды — Понтиды — Малый Кавказ — Эльбурс — Туркмено-Хорасанские горы. 2-я — Северная Добруджа Горный Крым — Большой Кавказ — Копетдаг. 3-я — Апеннины — Калабриды (юг Апеннинского полуострова) — структуры Северной Сицилии — Телль-Атлас — Эр-Риф Андалусские горы (Кордильера-Бетика) — структуры Балеарских островов Западного Средиземноморья. 4-я — Динариды Эллиниды — структуры юга Эгейского моря — Критская дуга — Тавриды Турции — Загрос — Макран — Белуджистанские горы — Гималаи — Индо-Бирманский ороген — Зондско-Бандская дуга Индонезии. Пояс начал развитие при распаде суперконтинента Пангея во 2-й половине перми, когда в результате континентального рифтогенеза и последующего в триасе — юре спрединга возник океан Мезотетис (смотри в статье Тетис), частично наследовавший палеозойский Палеотетис, но располагавшийся южнее последнего. Коллизия континентов в области Мезотетиса началась в поздней юре. В позднем мелу южнее раскрылся новый океан — Неотетис, который имел множество ответвлений, заливов и окраинных морей. Считается, что Альпийско-Гималайский подвижный пояс главным образом возник при закрытии этого океана. Реликтовые бассейны Мезо- и Неотетиса сохранились в Средиземном море.

Закрытие Неотетиса началось в палеоцене и было вызвано столкновением островных дуг и коллизией континентов и микроконтинентов с Евразией. Основная фаза деформаций — поздний эоцен. Континентальная коллизия сопровождалась формированием многочисленных покровов, включая офиолитовые. Внедрение Индостанского блока в Евразию с юга привело к формированию в восточном сегменте пояса высочайших горных цепей (Гиндукуш, Памир, Гималаи). Величина внедрения около 2 тысяч км. Пояс продолжает активно развиваться (сейсмичность, вулканизм). Современная конвергенция (сближение) Афро-Аравийской и Евразийской плит реализуется в активных зонах субдукции (поддвига одной литосферной плиты под другую) Восточного Средиземноморья (Калабрийской, Эгейской и Кипрской) и на юге Аравийского моря. В Бирмано-Зондской системе на юго-востоке пояса продолжается субдукция коры Индийского океана под Зондско-Бандскую островную дугу, на крайнем юге которой, в районе острова Тимор, в середине плиоцена началась коллизия Австралийского континента с Евразийским.

Лит.: Хайн В. Е. Региональная геотектоника: Альпийский Средиземноморский пояс. М., 1984; он же. Тектоника континентов и океанов (год 2000). М., 2001.

А. Ф. Лимонов.

Высотная поясность территории Российской Федерации отличается многообразием и тесно связана с широтными зонами. С высотой трансформируется почвено — растительный покров, климат, геоморфологические и гидрологические процессы.

Изменение компонентов природы провоцирует смену природных комплексов, в процессе чего образовываются высотные пояса.

Смена территориальных природных комплексов в зависимости от высоты имеет название высотная поясность или вертикальная зональность.

Факторы, влияющие на формирование высотной поясности

На процесс формирование разных типов высотной поясности влияют такие факторы:

1. Географическое расположение горной системы . Высотное положение и количество горных поясов в определенной горной системе зависит от того, в какой широте находится территория, на которой они расположены, а также ее положение по отношению к ближайшим океанам и морям.

Какие горы составляют основу Альпийско-Гималайского пояса?

Высотность горных поясов России увеличивается в направлении с севера на юг.

Ярким примером этой теории является высотагорной системы Урала, которая находится в северной части государства.

Максимальная высота Уральских гор становит 1100 м, в то время как для Кавказских гор эта цифра служит средним показателем высоты. В каждой горной системе имеется разное количество высотных поясов.

2. Рельеф .

Распределение снежного покрова, сохранность продуктов выветривания, и уровень увлажнения определяет рельеф горных систем. Именно рельефная структура гор влияет на формирование природных комплексов, в частности и растительного покрова.

3. Климат . Климатические условия являются важнейшим фактором, благодаря которому происходит формирование зон высотной поясности. С увеличением высоты по отношению к уровню моря происходят существенные изменения в уровне солнечной радиации, температурном режиме, силе и направлении ветра, общего типа погоды.

Климат влияет на флору и фауну горных систем, в итоге создавая определенный аутентичный природный комплекс.

4. Экспозиция склонов . Существенную роль в распределении влаги, тепла, процессов выветривания играет экспозиция горных склонов. В северных частях горных систем склоны расположены значительно ниже, нежели в южных частях.

История формирования высотной поясности России

Формирование высотной поясности на современной территории Российской Федерации берет свое начало в раннем плейстоцене, в период межледниковья (валдайское и московское обледенение).

В связи с неоднократными климатическими трансформациями, границы высотной поясности смещались несколько раз. Ученными доказано, что все современные горные системы России первично располагались приблизительно на 6° выше их нынешнего положения.

Высотная поясность России привела к формированию горных комплексов – Урала и гор юга и востока государства (Кавказ, Алтай, Байкальские горные хребты, Саяны).

Уральские горы имеют статус самой древней горной системы мира, их формирование началось предположительно в архейском периоде. Горные системы юга значительно моложе, однако благодаря тому, что находятся ближе к экватору, значительно преобладают в показателях высоты.

Лекция добавлена 07.11.2012 в 02:47:11

Средиземномо́рский (Альпийско-Гималайский) скла́дчатый (геосинклина́льный) по́яс - складчатый пояс, пересекающий Северо-Западную Африку и Евразию в широтном направлении от Атлантического океана до Южно-Китайского моря, отделяя южную группу древних платформ, до середины Юрского периода составлявшую суперконтинент Гондвану, от северной группы, составлявшей ранее континент Лавразия и Сибирскую платформу.

Средиземноморский складчатый пояс

На востоке Средиземноморский складчатый пояс сочленяется с западной ветвью Тихоокеанского геосинклинального пояса.

Средиземноморский пояс охватывает южные районы Европы и Средиземноморье, Магриб (Северо-Западную Африку), Малую Азию, Кавказ, Персидские горные системы, Памир, Гималаи, Тибет, Индокитай и Индонезийские острова.

В средней и центральной части Азии он почти объединён с Урало-Монгольской геосинклинальной системой, а на западе близок к Северо-Атлантической системе.

Пояс формировался в течение длительного времени, охватывающего период от докембрия до наших дней.

Средиземноморский геосинклинальный пояс включает 2 складчатые области (мезозоиды и альпиды), которые делятся на системы:

См.

Примечания

  1. Цейслер В.М., Караулов В.Б., Успенская Е.А., Чернова Е.С. Основы региональной геологии СССР. - М: Недра, 1984. - 358 с.

Ссылки

Складчатые пояса на карте мира

CC© wikiredia.ru

Альпийско-Гималайский горный пояс начинается на юго-западе Европы и тянется неширокой полосой к востоку. В него входят Пиренеи, Альпы, Карпаты, Кавказ, Апеннины, Балканы, а также равнины во внутренних впадинах.
Продолжением Альпийско-Гималайского пояса в Азии является Малоазиатское нагорье. На севере длинной цепью тянется Понтийский хребет, на юге — горы Тавра.

Армянское вулканическое нагорье (5156 м) находится к востоку от Анатолийского плоскогорья. Здесь можно видеть вулканические плато, конусы вулканов, провальные котловины и другие формы вулканического рельефа. В целом Армянское нагорье представляет собой огромный свод, приподнятый и расколотый на отдельные части. Наибольшую площадь огромного Иранского нагорья (5604 м) занимают хребет Эльбурс, горы Загрос и обширные равнины между ними. Это активная сейсмическая зона, где происходят землетрясения силой до 10 баллов.

Горные страны Гиндукуш, Памир, Гималаи и Тибетское нагорье являются самыми высокими на нашей планете. Главная черта рельефа - очень глубокое расчленение.

Мощность земной коры на границе Гималаев и Тибета достигает 70 км, что примерно на 30 км больше, чем на смежных территориях.

Гималаи включают в себя огромную территорию длиной около 2500 км и шириной до 350 км. Эверест достигает 8848 м. Наиболее высокая часть Гималаев сложена кристаллическими сланцами, а Эверест -пермскими известняками.
Одним из самых эффектных горных узлов на поверхности Земли является Памир. В нем сходятся горные цепи Каракорума, Куньлуня, Гиндукуша. Здесь соседствуют высочайшие горы и высокогорное плато.

Горные гряды с острыми зазубренными гребнями разделяют гигантские долины глубиной 2 - 3 км.

АЛЬПИ́ЙСКО-ГИМАЛА́ЙСКИЙ ПОДВИ́ЖНЫЙ ПО́ЯС

В их верховьях лежат огромные ледники и ледниковые озера. Ученые полагают, что эти признаки указывают на продолжающееся до настоящего времени быстрое поднятие гор (I -2 см в год) . Об этом же напоминают частые землетрясения, приводящие к крупным обвалам и разрушению склонов. Геологи предполагают, что Памирский горный узел был создан при столкновении литосферных плит.

На юго-востоке Альпийско-Гималайский пояс оканчивается Бирманским нагорьем (4149 м) , сложенным гранитами, кристаллическими сланцами, известняками и песчаниками.

Субмеридиональные хребты разделены здесь продольными впадинами. Осевые зоны сложены мезозойскими гранитами и сланцами. Похоже на него и Шанское нагорье.

Таким образом, для всего Альпийско-Гималайского пояса характерны динамичность и контрастность тектонических движений (в Альпах размах движений составил 10-12 км; в Карпатах - 6 - 7 км; в Гималаях - 10-12 км) .

Хотя вулканизм развивался не во всех горных странах этого пояса, но сейсмическая напряженность довольно высока. Зоны «сейсмического молчания» чередуются с зонами частых землетрясений силой до 10 баллов.

Альпийская складчатость - эпоха в истории образования земной коры. В эту эру образовались самая высокая горная система мира - Гималаи. Чем характеризуется эпоха? Какие ещё горы альпийской складчатости существуют?

Складчатости земной коры

В геологии слово «складка» недалеко отходит от своего первичного значения. Оно обозначает участок земной коры, в котором порода «смялась». Обычно порода залегает горизонтальными слоями. Под действием внутренних процессов Земли её положение может изменяться. Она прогибается или сдавливается, накладываясь на соседние участки. Это явление и называется складчатостью.

Образование складчатостей происходит неравномерно. Периоды их появления и развития названы в соответствии с геологическими эпохами. Самой древней является архейская. Она закончила формироваться ещё 1,6 миллиарда лет назад. С того времени многочисленные внешние процессы планеты превратили её в равнины.

После архейской существовали байкальская, каледонская, герцинская, Самой последней является альпийская эпоха складчатости. В истории формирования земной коры она занимает последние 60 миллионов лет. Название эпохи впервые озвучил французский геолог Марсель Бертран в 1886 году.

Альпийская складчатость: характеристика периода

Эпоху условно можно разделить на два периода. В первом в земной поверхности активно появлялись прогибы. Постепенно они заполнялись лавой и осадочными отложениями. Поднятия коры были небольшими и очень локальными. Второй этап происходил интенсивнее. Различные геодинамические процессы способствовали образованию гор.

Альпийская складчатость сформировала большую часть крупнейших современных горных систем, которые входят в Средиземноморский и Тихоокеанское вулканическое кольцо. Таким образом, складчатость образует две большие области с горными хребтами и вулканами. Они входят в состав самых молодых гор планеты и отличаются климатическими зонами, а также высотами.

Эпоха ещё не завершилась, а горы продолжают образовываться и сейчас. Об этом свидетельствует сейсмическая и вулканическая активность в различных регионах Земли. Складчатая область не сплошная. Хребты часто прерываются впадинами (например, Ферганская впадина), в некоторых из них образовались моря (Черное, Каспийское, Средиземное).

Средиземноморский пояс

Горные системы альпийской складчатости, которые принадлежат к альпийско-гималайскому поясу, протянулись в широтном направлении. Они практически полностью пересекают Евразию. Начинаются в Северной Африке, проходят через Средиземное, Черное и Каспийское моря, тянется через Гималаи до островов Индокитая и Индонезии.

Горы альпийской складчатости включают Апеннины, Динары, Карпаты, Альпы, Балканы, Атлас, Кавказ, Бирму, Гималаи, Памир и т. д. Все они отличаются своим обликом и высотой. Например, - средневысокие, имеют плавные очертания. Они покрыты лесами, альпийской и субальпийской растительностью. Крымские горы, в отличие от них, более крутые и скалистые. Их покрывает более скупая степная и лесостепная растительность.

Самая высокая горная система - Гималаи. Они находятся в пределах 7 стран, включая Тибет. Горы растянулись на 2 400 километров в длину, а их средние высоты достигают 6 километров. Наивысшей точкой является гора Эверест с высотой 8848 километров.

Тихоокеанское огненное кольцо

Альпийская складчатость связана и с формированием Оно включает и впадины, которые к ним прилегают. Расположено вулканическое кольцо по периметру Тихого океана.

Оно охватывает Камчатку, Курильские и Японские острова, Филиппины, Антарктиду, Новую Зеландию и Новую Гвинею на западном побережье. На восточном побережье океана в него входят Анды, Кордильеры, Алеутские острова и архипелаг Огненная Земля.

Название «огненное кольцо» эта область заслужила благодаря тому, что здесь находится большинство вулканов планеты. Приблизительно 330 из них действующие. Кроме извержений, в пределах Тихоокеанского пояса происходит наибольшее количество землетрясений.

Частью кольца является самая длинная горная система планеты - Кордильеры. Они пересекают 10 стран, входящих в Северную и Южную Америку. Протяженность горной цепи составляет 18 тысяч километров.



Публикации по теме