Частоты ямр металлов. Явление магнитного резонанса

Ядерный магнитный резонанс

В.К. Воронов

Иркутский государственный технический университет

ВВЕДЕНИЕ

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 10^ 3 – 10^ 6 МГц; микрорадиоволны) и высоких частот (примерно 10^(-2) – 10^ 2 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10^(-7) эВ для области радиочастот и около 10^(-4) эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.

Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (> 7)обладаетLu. Наибольшее измеримое значение углового момента (наибольшее значение проекции момента на выделенное направление) равно iћ , где ћ = h /2π , а h - постоянная Планка.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с “полным спариванием”, аналогичным полному спариванию электронов в диамагнитной молекуле.

В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

Ниже излагаются сущность явления ЯМР и его отличительные особенности.

СПЕКТРОСКОПИЯ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

Сущность явления ЯМР

Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле Н 0 , направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна μ z H 0 , где μ z , – проекция ядерного магнитного момента на направление поля.

Как уже отмечалось, ядро может находиться в 2I + 1 состояниях. При отсутствии внешнего поля Н 0 все эти состояния имеют одинаковую энергию. Если обозначить наибольшее измеримое значение компоненты магнитного момента через μ , то все измеримые значения компоненты магнитного момента (в данном случае μ z ,) выражаются в виде m μ , где m – квантовое число, которое может принимать, как известно, значения

m= I , I - 1,I - 2...-(I - 1),-I.

Так как расстояние между уровнями энергии, соответствующими каждому из 2I + 1 состояний, равно m Н 0 /I , то ядро со спиномI имеет дискретные уровни энергии

- μ H 0, -(I-1)μ z H 0 / I,..., (I-1)μ z H 0 / I, μ H 0.

Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана). Зеемановское расщепление проиллюстрировано на рис. 1 для системы с I = 1 (с тремя уровнями энергии).

Рис. 1. Зеемановское расщепление уровней энергии ядра в магнитном поле.

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный – речь идет о системе ядер, магнитный – имеются в виду только их магнитные свойства, резонанс – само явление носит резонансный характер. Действительно, из правил частот Бора следует, что частота ν электромагнитного поля, вызывающего переходы между соседними уровнями, определяется формулой

, (1)

Так как векторы момента количества движения (углового момента) и магнитного момента параллельны, то часто удобно характеризовать магнитные свойства ядер величиной γ , определяемой соотношением

, (2)

где γ – гиромагнитное отношение, имеющее размерность радиан * эрстед^(- 1) * секунда^(- 1) (рад * Э^(- 1) * с*(- 1) ) или радиан/(эрстед * секунда) (рад/(Э * с)). С учетом этого найдем

, (3)

Таким образом, частота пропорциональна приложенному полю.

Если в качестве типичного примера взять значениеγ для протона, равное 2,6753*10:4 рад/(Э * с), и Н 0 = 10 000 Э, то резонансная частота

Такая частота может быть генерирована обычными радиотехническими методами.

Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (~ 150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.

До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1 H (протонный магнитный резонанс – ПМР) и фтора 19 F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

Высокое естественное содержание “магнитного” изотопа (1 H 99,98%, 19 F 100%); для сравнения можно упомянуть, что естественное содержание “магнитного” изотопа углерода 13 C составляет 1,1%;

Большой магнитный момент;

Спин I = 1/2.

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1 H и 19 F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1 H и 19 F) ядрах, таких, как 13 C, 31 P, 11 B, 17 O в жидкой фазе (так же, как и на ядрах 1 1 H и 19 F).

Внедрение импульсных спектрометров ЯМР в повседневную практику существенно расширило экспериментальные возможности этого вида спектроскопии. В частности, запись спектров ЯМР 13 C растворов – важнейшего для химии изотопа – теперь является фактически привычной процедурой. Обычным явлением стало также детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности для сигналов от 1 H, в том числе и в твердой фазе.

Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

Еще одна особенность ЯМР – влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 – 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1*10^ 4 Гц (отсюда понятие ЯМР широких линий).

В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг;

Константы спин-спинового взаимодействия.

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H 0 ) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

, (4)

где σ – безразмерная постоянная, называемая постоянной экранирования и не зависящая от H 0 , но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H 0 .

Величина σ меняется от значения порядка 10^(- 5) для протона до значений порядка 10^(- 2) для тяжелых ядер. С учетом выражения для Hлок имеем

, (5)

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней (рис. 2). При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах (см. выражение (5)). Если проводить эксперимент, изменяя поле H 0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

Рис. 2. Влияние электронного экранирования на зеемановские уровни ядра: а – неэкранированного, б – экранированного.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра.

Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.

Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 – 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1 H в одной молекуле. Речь идет об этиловом спирте CH 3 CH 2 OH, типичный спектр ЯМР 1 H которого при низком разрешении показан на рис. 3.

Рис. 3. Спектр протонного резонанса жидкого этилового спирта, снятый при низком разрешении.

В этой молекуле три типа протонов: три протона метильной группы CH 3 –, два протона метиленовой группы –CH 2 – и один протон гидроксильной группы –OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3: 2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда.

Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра 8, определяемого следующим образом:

, (6)

где H - Hэт есть разность химических сдвигов для исследуемого образца и эталона, Hэт – абсолютное положение сигнала эталона при приложенном поле H 0 .

В реальных условиях эксперимента более точно можно измерить частоту, а не поле, поэтому δ обычно находят из выражения

, (7)

где ν - ν эт есть разность химических сдвигов для образца и эталона, выраженная в единицах частоты (Гц); в этих единицах обычно производится калибровка спектров ЯМР.

Строго говоря, следовало бы пользоваться не ν 0 – рабочей частотой спектрометра (она обычно фиксирована), а частотой ν эт , то есть абсолютной часто-той, на которой наблюдается резонансный сигнал эталона. Однако вносимая при такой замене ошибка очень мала, так как ν 0 и ν эт почти равны (отличие составляет 10^ (-5), то есть на величину σ для протона). Поскольку разные спектрометры ЯМР работают на разных частотах ν 0 (и, следовательно, при различных полях H 0 ), очевидна необходимость выражения δ в безразмерных единицах.

За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20000 м.д. в случае ЯМР 59 Co (кобальта). В спектрах 1 H сигналы протонов подавляющего числа соединений лежат в интервале 0 – 10 м.д.

Спин-спиновое взаимодействие

В 1951 – 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров – это резонанс на фторе в молекуле POCl 2 F. Спектр 19 F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора (рис. 4). Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H 0 , вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.

Рис. 4. Дублет в спектре резонанса на ядрах фтора в молекуле POCl 2 F

Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловленомеханизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них – спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E = hν ). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.

Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1 H) в том случае, когда химические сдвиги между их резонансными сигналами велики.

Рис. 5. Вид спектра ЯМР системы, состоящей из магнитных ядер А и Х со спином I = 1/2 при выполнении условия δ AX > J AX .

На рис. 5 показано, как выглядит спектр ЯМР, если оба ядра, то есть А и Х, имеют спин, равный 1/2. Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J (Гц); в данном случае это константа J АХ .

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI + 1 линий.

ЗАКЛЮЧЕНИЕ

Вскоре после открытия явления ЯМР в конденсированных средах стало ясно, что ЯМР будет основой мощного метода исследования строения вещества и его свойств. Действительно, исследуя спектры ЯМР, мы используем в качестве резонирующей систему ядер, чрезвычайно чувствительных к магнитному окружению. Локальные же магнитные поля вблизи резонирующего ядра зависят от внутри- и межмолекулярных эффектов, что и определяет ценность этого вида спектроскопии для исследования строения и поведения многоэлектронных (молекулярных) систем.

В настоящее время трудно указать такую область естественных наук, где бы в той или иной степени не использовался ЯМР. Методы спектроскопии ЯМР широко применяются в химии, молекулярной физике, биологии, агрономии, медицине, при изучении природных образований (слюд, янтаря, полудрагоценных камней, горючих минералов и другого минерального сырья), то есть в таких научных направлениях, в которых исследуются строение вещества, его молекулярная структура, характер химических связей, межмолекулярные взаимодействия и различные формы внутреннего движения.

Методы ЯМР находят все более широкое применение для изучения технологических процессов в заводских лабораториях, а также для контроля и регулирования хода этих процессов в различных технологических коммуникациях непосредственно на производстве. Исследования последних пятидесяти лет показали, что магнитно-резонансные методы позволяют обнаруживать нарушения протекания биологических процессов на самой ранней стадии. Разработаны и выпускаются установки для исследования всего тела человека методами магнитного резонанса (методами ЯМР-томографии).

Что касается стран СНГ, и прежде всего России, то методы магнитного резонанса (особенно ЯМР) к настоящему времени заняли прочное место в научно-исследовательских лабораториях этих государств. В различных городах (Москве, Новосибирске, Казани, Таллине, Санкт-Петербурге, Иркутске, Ростове-на-Дону и др.) возникли научные школы по использованию указанных методов со своими оригинальными задачами и подходами к их решению.

1. Попл Дж., Шнейдер В., Бернстейн Г. Спектры ядерного магнитного резонанса высокого разрешения. М.: ИЛ, 1962. 292 с.

2. Керрингтон А., Мак-Лечлан Э. Магнитный резонанс и его применение в химии. М.: Мир, 1970. 447 с.

3. Бови Ф.А. ЯМР высокого разрешения макро-молекул.М.: Химия, 1977. 455 с.

4. Хеберлен У., Меринг М. ЯМР высокого разрешения в твердых телах. М.: Мир, 1980. 504 с.

5. Сликтер Ч. Основы теории магнитного резонанса. М.: Мир, 1981. 448 с.

6. Ионин Б.И., Ершов Б.А., Кольцов А.И. ЯМР-спектроскопия в органической химии. Л.: Химия, 1983. 269 с.

7. Воронов В.К. Методы парамагнитных добавок в спектроскопии ЯМР. Новосибирск: Наука, 1989. 168 с.

8. Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях. М.: Мир, 1990. 709 с.

9. Дероум Э. Современные методы ЯМР для химических исследований. М.: Мир, 1992. 401 с.

10. Воронов В.К., Сагдеев Р.З. Основы магнитного резонанса. Иркутск: Вост.-Сиб. кн. изд-во, 1995.352 с.

В этой главе, как и в предыдущей, рассматриваются явления, связанные с излучением и поглощением энергии атомами и молекулами.

Магнитный резонанс - избирательное поглощение электро­магнитных волн веществом, помещенным в магнитное поле.

§ 25.1. Расщепление энергетических уровней атомов в магнитном поле

В § 13.1, 13.2 было показано, что на контур с током, помещен­ный в магнитное поле, действует момент силы. При устойчивом равновесии контура его магнитный момент совпадает с направле­нием вектора магнитной индукции. Такое положение занимает контур с током, предоставленный самому себе. Существенно ина­че ориентируются в магнитном поле магнитные моменты частиц. Рассмотрим этот вопрос с позиции квантовой механики.

В § 23.6 отмечалось, что проекция момента импульса электро­на на некоторое направление принимает дискретные значения. Чтобы обнаружить эти проекции, необходимо каким-то образом выделить направление Z. Один из наиболее распространенных способов - задание магнитного поля, в этом случае определяют проекцию орбитального момента импульса [см. (23.26)], проек­цию спина (23.27), проекцию полного момента импульса электро­на [см. (23.30)] и проекцию момента импульса атома L Az [см. (23.37)] на направление вектора магнитной индукции В.

Связь между моментом импульса и магнитным моментом (13.30) и (13.31) позволяет использовать перечисленные формулы для нахождения дискретных проекций соответствующего магнит­ного момента на направление вектора В. Таким образом, в отли­чие от классических представлений, магнитные моменты частиц ориентируются относительно магнитного поля под некоторыми определенными углами.

Для атома, например, из (23.37) получаем следующие значе­ния проекций магнитного момента р тг на направление вектора магнитной индукции:

где магнетон Бора (см. § 13.1), т - масса электрона, mj - магнитное квантовое число, g - множитель Ланде (g-фактор) (см. § 13.4), для заданного уровня энергии ато­ма он зависит от квантовых чисел L, J, S. Знак «-» в (25.1) обус­ловлен отрицательным зарядом электрона.

Энергия атома в магнитном поле с учетом того, что в отсутст­вие поля энергия атома равна Е о, определяется формулой

Так как магнитное квантовое число mj [см. (23.37)] может прини­мать 2J + 1 значений от +J до -J, то из (25.2) следует, что каждый энергетический уровень при помещении атома в магнитное поле рас­щепляется на 2J +1 подуровней. Это схематически показано на рис. 25.1 для J = 1/2. Разность энергий между соседними

подуровнями равна

Расщепление энергетических уров­ней приводит и к расщеплению спект­ральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.

Запишем выражение (25.2) для двух подуровней E 1 и Е 2 , образованных при наложении магнитного поля:

где Е 01 и Е 02 - энергетические уровни атома в отсутствие магнитного поля. Ис­пользуя (23.31) и (25.4), получаем выра­жение для излучаемых атомом частот:

Частота спектральной линии в отсутствие магнитного поля;

Расщепление спектральной линии в магнитном поле. Из (25.7) видно, что Av зависит от магнитного квантового числа, множите­ля Ланде и магнитной индукции поля. Если g 1 = g 2 = g, то

Согласно правилам отбора для магнитного квантового числа, имеем

Это соответствует трем возможным частотам: n 0 + gm B B/h, n 0 , n 0 - gm B B/h, т. е. в магнитном поле спектральная линия расщеп­ляется и превращается в триплет (рис. 25.2). Такое расщепление называется нормальным или простым эффектом Зеемана. Он наблюдается в сильных магнитных полях или при g 1 = g 2 .

В слабых магнитных полях при g 1 ¹ g 2 существует аномаль­ный эффект Зеемана, и расщепление спектральных линий зна­чительно более сложное.

§ 25.2. Электронный парамагнитный резонанс и его медико-биологические применения

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Од­нако такие переходы осуществляются индуцированно под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщеплен­ными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом.

В зависимости от типа частиц - носителей магнитного момен­та - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

ЭПР происходит в веществах, содержащих парамагнитные частицы: молекулы, атомы, ионы, радикалы, обладающие маг­нитным моментом, обусловленным электронами. Возникающее при этом явление Зеемана объясняют расщеплением электронных уровней (отсюда название резонанса - «электронный»). Наибо­лее распространен ЭПР на частицах с чисто спиновым магнитным моментом (в зарубежной литературе такую разновидность ЭПР иногда называют электронным спиновым резонансом).

ЭПР был открыт Е. П. Завойским в 1944 г. В первых опытах на­блюдалось резонансное поглощение в солях ионов группы железа. Завойскому удалось изучить ряд закономерностей этого явления.

Из выражений (23.31) и (25.3) получаем следующее условие резонансного поглощения энергии:

Магнитный резонанс наблюдается, ес­ли на частицу одновременно действу­ют постоянное поле индукции В рез и электромагнитное поле с частотой v. Из условия (25.9) понятно, что обна­ружить резонансное поглощение мож­но двумя путями: либо при неизмен­ной частоте плавно изменять магнит­ную индукцию, либо при неизменной магнитной индукции плавно изме­нять частоту. Технически более удоб­ным оказывается первый вариант.

На рис. 25.3 показаны расщепле­ние энергетического уровня электро­на (а) и изменение мощности Р элек­тромагнитной волны, прошедшей об­разец, в зависимости от индукции магнитного поля (б). При выполнении условия (25.9) возникает ЭПР.

Форма и интенсивность спектральных линий, наблюдаемых в ЭПР, определяются взаимодействием магнитных моментов элек­тронов, в частности спиновых, друг с другом, с решеткой твердо­го тела и т. п. Выясним, как эти факторы влияют на характер спектров.

Предположим, что условие (25.9) выполняется. Для поглоще­ния энергии необходимо, чтобы у атомов вещества была большая населенность нижних подуровней, чем верхних. В противном слу­чае, будет преобладать индуцированное излучение энергии.

При электронном парамагнитном резонансе наряду с поглоще­нием энергии и увеличением населенности верхних подуровней происходит и обратный процесс - безызлучательные переходы на нижние подуровни, энергия частицы передается решетке.

Процесс передачи энергии частиц решетке называют спин-ре­шеточной релаксацией, он характеризуется временем т. По соот­ношению Гейзенберга (23.11) это приводит к уширению уровня.

Таким образом, резонансное поглощение вызывается не точно при одном значении В, а в некотором интервале (рис. 25.4). Вместо бесконечно узкой линии поглощения будет линия конеч­ной ширины: чем меньше время спин-решеточной релаксации, тем больше ширина линии (t 1 < t 2 , соответственно кривые 1 и 2 на рис. 25.4).

Уширение линий ЭПР зависит также от взаимодействия спи­нов электронов (спин-спиновое взаимодействие) и от других взаи­модействий парамагнитных частиц. Разные типы взаимодейст­вия влияют не только на ширину линии поглощения, но и на ее форму.

Поглощенная при ЭПР энергия, т. е. интегральная (суммар­ная) интенсивность линии, при определенных условиях пропор­циональна числу парамагнитных частиц. Отсюда следует, что по измеренной интегральной интенсивности можно судить о кон­центрации этих частиц.

Важными параметрами, характеризующими синглетную (оди­ночную) линию поглощения, являются n pe з, В рез, g (положение точки резонанса), соответствующие условию (25.9). При постоян­ной частоте v значение В рез зависит от g-фактора. В простейшем случае g-фактор позволяет определить характер магнетизма сис­темы (спиновый или орбитальный). Если же электрон связан с атомом, входящим в состав твердой кристаллической решетки или какой-либо молекулярной системы, то на него будут влиять сильные внутренние поля. Измеряя g-фактор, можно получить информацию о полях и внутримолекулярных связях.

Однако если бы при исследовании получалась только синглетная линия поглощения, то многие приложения магнитных резо­нансных методов были бы невозможны. Большинство приложе­ний, в том числе и медико-биологических, базируется на анализе группы линий. Наличие в спектре ЭПР группы близких линий ус­ловно называют расщеплением. Имеется два характерных типа расщепления для спектра ЭПР.

Первое - электронное расщепление - возникает в тех случа­ях, когда молекула или атом обладают не одним, а несколькими электронами, вызывающими ЭПР. Второе - сверхтонкое рас­щепление - наблюдается при взаимодействии электронов с маг­нитным моментом ядра.

Современная методика измерения ЭПР основывается на опре­делении изменения какого-либо параметра системы, происходя­щего при поглощении электромагнитной энергии.

Прибор, используемый для этой цели называют ЭПР-спектро­метром. Он состоит из следующих основных частей (рис. 25.5): 1 - электромагнит, создающий сильное однородное магнитное поле, индукция которого может плавно изменяться; 2 - генера­тор СВЧ-излучения электромагнитного поля; 3 - специальная

«поглощающая ячейка», которая концентрирует падающее СВЧ-излучение на образце и позволяет обнаружить поглощение энергии образцом (объемный резонатор); 4 - электронная схема, обеспечивающая наблюдение или запись спектров ЭПР; 5 - обра­зец; 6 - осциллограф.

В современных ЭПР-спектрометрах используют частоту около 10 ГГц (длина волны 0,03 м). Это означает в соответствии с (25.9), что максимум ЭПР поглощения для g = 2 наблюдается при В = 0,ЗТл.

Практически на ЭПР-спектрометрах регистрируют не кривую поглощения энергии (рис. 25.6, а), а ее производную (рис. 25.6, б). Одно из медико-биологических применений метода ЭПР за­ключается в обнаружении и исследовании свободных радикалов. Так, например, спектры ЭПР облученных белков позволили объ­яснить механизм образования свободных радикалов и в связи с этим проследить изменения первичных и вторичных продуктов радиационного поражения.

ЭПР широко используют для изучения фотохимических про­цессов, в частности фотосинтеза. Исследуют канцерогенную ак­тивность некоторых веществ.

С санитарно-гигиенической целью метод ЭПР используют для определения концентрации радикалов в воздушной среде.

Сравнительно недавно специально для изучения биологических молекул был предложен метод спин-меток, сущность которого со­стоит в том, что с молекулой исследуемого объекта связывается парамагнитное соединение с хорошо известной структурой. По спектрам ЭПР находят положение такой спин-метки в молекуле. Вводя метки в различные части молекул, можно установить распо­ложение различных групп атомов, их взаимодействия, изучать природу и ориентацию химических связей и обнаруживать моле­кулярное движение. Присоединение к молекуле не одной, а не­скольких спин-меток, например двух, позволяет получить сведе­ния о расстояниях меченых групп и их взаимной ориентации.

Используются также и спиновые зонды - парамагнитные час­тицы, которые нековалентно связаны с молекулами. Изменение ЭПР-спектра спиновых зондов дает информацию о состоянии ок­ружающих его молекул. На рис. 25.7 показаны ЭПР-спектры нитроксильного радикала, который в качестве спинового зонда помещен в глицерин. С увеличением температуры уменьшается вязкость глицерина, и это изменяет вид спектра ЭПР. Таким об­разом, по форме спектра ЭПР можно определить микровязкость - вязкость ближайшего окружения спинового зонда. Так, в част­ности, удается определить микровязкость липидного слоя мемб­ран (см. § 11.2).

В целом исследования биологических объектов методом ЭПР имеют широкую область применений.

§ 25.3. Ядерный магнитный резонанс. ЯМР-интроскопия (магнито-резонансная томография)

Ядерный магнитный резонанс не относится к разделу физики атомов и молекул, однако рассматривается в одной главе с ЭПР как явление магнитного резонанса.

Магнитный момент ядер суммируется из магнитных моментов нуклонов. Обычно этот момент выражают в ядерных магнетонах (m я); m я = 5,05 10 -27 А м 2 . Магнитный момент протона прибли­женно равен р mp = 2,79m я, а нейтрона р тп = -1,91m я. Знак «-» оз­начает, что магнитный момент нейтрона ориентирован противо­положно спину.

Приведем магнитные моменты р тя некоторых ядер, выражен­ные в ядерных магнетонах.

Таблица 32

Магнитный момент ядра, помещенного в магнитное поле, мо­жет принимать лишь дискретную ориентацию. Это означает, что энергии ядра будут соответствовать подуровни, расстояние между которыми зависит от индукции магнитного поля.

Если в этих условиях на ядро воздействовать электромагнит­ным полем, то можно вызвать переходы между подуровнями. Чтобы осуществить эти переходы, а также поглощение энергии электромагнитного поля, необходимо выполнение условия, ана­логичного (25.9):

где g я - ядерный множитель Ланде.

Избирательное поглощение электромагнитных волн опре­деленной частоты веществом в постоянном магнитном по­ле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом.

ЯМР можно наблюдать при выполнении условия (25.10) лишь для свободных атомных ядер. Экспериментальные значения резо­нансных частот ядер, находящихся в атомах и молекулах, не со­ответствуют (25.10). При этом происходит «химический сдвиг», который возникает в результате влияния локального (местного) магнитного поля, создаваемого внутри атома электронными тока­ми i индуцированными внешним магнитным полем. В результате такого «диамагнитного эффекта» возникает дополнительное маг­нитное поле, индукция которого пропорциональна индукции внешнего магнитного поля, но противоположна ему по направле­нию. Поэтому полное эффективное магнитное поле, действующее на ядро, характеризуется индукцией

где s - постоянная экранирования, по порядку величины равная 10 -6 и зависящая от электронного окружения ядер.

Отсюда следует, что для данного типа ядер, находящихся в различных окружениях (разные молекулы или разные, не экви­валентные места одной и той же молекулы), резонанс наблюдает­ся при различных частотах. Это и определяет химический сдвиг. Он зависит от природы химической связи, электронного строения молекул, концентрации данного вещества, типа растворителя, температуры и т. д.

Если два или несколько ядер в молекуле экранированы по-раз­ному, т. е. ядра в молекуле занимают химически не эквивалентные положения, то они имеют различный химический сдвиг. Спектр ЯМР такой молекулы содержит столько резонансных ли­ний, сколько химически не эквивалентных групп ядер данного типа в ней имеется. Интенсивность каждой линии пропорци­ональна числу ядер в данной группе.

В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту об­ласть применения ЯМР называют ЯМР широких линий. В жидкостях наблюда­ют узкие линии, и это называют ЯМР высокого разрешения.

На рис. 25.8 изображены кривые ядер­ного магнитного резонанса для твердых тел (а) и жидкостей (б). Острота пика в жидкостях обусловлена следующим. Каж­дое ядро взаимодействует со своими сосе­дями. Так как ориентация ядерных маг­нитных моментов, окружающих ядро дан­ного типа, изменяется от точки к точке в веществе, то полное магнитное поле, действующее на различные однотипные ядра, также изменяется. Это означает, что для всей совокупности ядер область резонанса долж­на представлять собой широкую линию. Однако из-за быстрых пе­ремещений молекул в жидкости локальные магнитные поля не­долговечны. Это приводит к тому, что ядра жидкости находятся под воздействием одного и того же среднего поля, поэтому линия резонанса является резкой.

Для химических соединений, в которых наблюдается ЯМР ядер, занимающих химически эквивалентные места в молекуле, наблюдается одиночная линия. Соединения более сложного стро­ения дают спектры из многих линий.

По химическому сдвигу, числу и положению спектральных линий можно установить структуру молекул.

Химики и биохимики широко используют метод ЯМР для ис­следования структуры от простейших молекул неорганических веществ до сложнейших молекул живых объектов, а также при решении многих задач, связанных с протеканием химических ре­акций, изучением структур исходных веществ и получающихся в результате реакций продуктов. Одним из преимуществ этого ана­лиза является то, что он не разрушает объектов исследования, как это происходит, например, при химическом анализе.

Очень интересные возможности для медицины может дать опре­деление параметров спектра ЯМР во многих точках образца. Посте­пенно, послойно проходя весь образец (сканируя), можно получить полное представление о пространственном распределении молекул, содержащих, например, атомы водорода или фосфора (при магнит­ном резонансе от протонов или ядер фосфора соответственно).

Все это осуществляется без разрушения образца, и поэтому можно проводить исследование на живых объектах. Такой метод называют ЯМР-интроскопией (об интроскопии см. § 19.8) или магнито-резонансной томографией (МРТ). Он позволяет разли­чать кости, сосуды, нормальные ткани и ткани со злокачествен­ной патологией. ЯМР-интроскопия позволяет различать изобра­жение мягких тканей, например, отличает изображение серого вещества мозга от белого, опухолевых клеток от здоровых, при этом минимальные размеры патологических «включений» могут составлять доли миллиметра. Можно ожидать, что ЯМР-интрос­копия станет эффективным методом диагностики заболеваний, которые связаны с изменением состояний органов и тканей.

Частота электромагнитных волн, вызывающих переходы меж­ду энергетическими состояниями при ЭПР и ЯМР, соответствует радиодиапазону. Поэтому оба этих явления относятся к радио­спектроскопии.

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг , который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Энциклопедичный YouTube

  • 1 / 5

    В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом.

    Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

    J z = ℏ μ I {\displaystyle J_{z}=\hbar \mu _{I}} и μ z = γ ℏ μ I {\displaystyle \mu _{z}=\gamma \hbar \mu _{I}} ,

    где μ I {\displaystyle \mu _{I}} - магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

    μ I = I , I − 1 , I − 2 , . . . , − I {\displaystyle \mu _{I}=I,I-1,I-2,...,-I} ,

    то есть ядро может находиться в 2 I + 1 {\displaystyle 2I+1} состояниях.

    Так, у протона (или другого ядра с I = 1/2 - 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

    μ z = ± γ ℏ I = ± ℏ / 2 {\displaystyle \mu _{z}=\pm \gamma \hbar I=\pm \hbar /2} ,

    такое ядро можно представить как магнитный диполь , z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

    Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными μ z {\displaystyle \mu _{z}} имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней − μ z B 0 , − I − 1 I B 0 , . . . , I − 1 I B 0 , μ z B 0 {\displaystyle -\mu _{z}B_{0},-{\frac {I-1}{I}}B_{0},...,{\frac {I-1}{I}}B_{0},\mu _{z}B_{0}} , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

    В простейшем случае для ядра со спином с I = 1/2 - например, для протона, расщепление

    δ E = ± μ z B 0 {\displaystyle \delta E=\pm \mu _{z}B_{0}}

    и разность энергии спиновых состояний

    Δ E = 2 μ z B 0 {\displaystyle \Delta E=2\mu _{z}B_{0}}

    Наблюдение ЯМР облегчается тем, что в большинстве веществ атомы не обладают постоянными магнитными моментами электронов атомных оболочек вследствие явления замораживания орбитального момента .

    Резонансные частоты ЯМР в металлах выше, чем в диамагнетиках (найтовский сдвиг).

    Химическая поляризация ядер

    При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер .

    Ларморовские частоты некоторых атомных ядер

    ядро Ларморовская частота в МГц при 0,5 Тесла Ларморовская частота в МГц при 1 Тесла Ларморовская частота в МГц при 7,05 Тесла
    1 H (Водород) 21,29 42,58 300.18
    ²D (Дейтерий) 3,27 6,53 46,08
    13 C (Углерод) 5,36 10,71 75,51
    23 Na (Натрий) 5,63 11,26 79.40
    39 K (Калий) 1,00 1,99

    Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

    Применение ЯМР

    Спектроскопия

    Приборы

    Сердцем спектрометра ЯМР является мощный магнит . В эксперименте, впервые осуществлённом на практике Парселлом , образец, помещённый в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле , действующее на неё, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности . Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте, чуть меньшей, чем ядра, лишённые электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

    Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

    В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его ещё называют методом непрерывного облучения (CW, continous wave).

    Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

    В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт .

    В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование , по которому любая функция может быть представлена в виде суммы множества гармонических колебаний .

    Спектры ЯМР

    Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

    • сигналы ядер атомов, входящих в определённые функциональные группы, лежат в строго определённых участках спектра;
    • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
    • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

    Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчёта констант экранирования и на их основании соотнести сигналы.

    ЯМР-интроскопия

    Явление ядерного магнитного резонанса можно применять не только в физике и химии , но и в медицине : организм человека - это совокупность все тех же органических и неорганических молекул.

    Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

    Содержание статьи

    МАГНИТНЫЙ РЕЗОНАНС, резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

    Электронный парамагнитный резонанс (ЭПР).

    Ядерный магнитный резонанс (ЯМР).

    ЯМР был открыт в 1946 американскими физиками Э.Перселлом и Ф.Блохом. Работая независимо друг от друга, они нашли способ резонансной «настройки» в магнитных полях собственных вращений ядер некоторых атомов, например водорода и одного из изотопов углерода. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты «выстраиваются» подобно железным опилкам вблизи постоянного магнита. Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала. Сигнал подается на компьютер, который обрабатывает его. Таким путем (метод компьютерной ЯМР-томографии) можно получить изображения. (При изменении внешнего магнитного поля малыми ступенями достигается эффект трехмерного изображения.) Метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых. ЯМР-томография считается более безопасной, нежели рентгеновская, поскольку не вызывает ни разрушения, ни раздражения тканей

    ядерный магнитный резонанс спектрометрия

    ЯМР -- самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

    Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры -- одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудова.

    Применение ЯМР

    Применение спектроскопии ЯМР. Спектроскопия ЯМР относится к неразрушающим методам анализа. Современная импульсная ЯМР фурье-спектроскопия позволяет вести анализ по 80 магнитным ядрам. ЯМР спектроскопия - один из основных физико-химических методов анализа, ее данные используют для однозначной идентификации как промежуточных продуктов химических реакций, так и целевых. Помимо структурных отнесений и количественного анализа, спектроскопия ЯМР приносит информацию о конформационных равновесиях, диффузии атомов и молекул в твердых телах, внутренних движениях, водородных связях и ассоциации в жидкостях, таутомерии, металлах и прототропии, упорядоченности и распределении звеньев в полимерных цепях, электронной структуре ионных кристаллов, жидких кристаллов и др. Спектроскопия ЯМР - источник информации о структуре биополимеров, в т. ч. белковых молекул в растворах, сопоставимой по достоверности с данными рентгеноструктурного анализа. В 80-е гг. началось бурное внедрение методов спектроскопии и томографии ЯМР в медицину для диагностики сложных заболеваний и при диспансеризации населения. Число и положение линий в спектрах ЯМР однозначно характеризуют все фракции сырой нефти, синтетических каучуков, пластмасс, сланцев, углей, лекарств, препаратов, продукции химии и фармацевтическими и др. Интенсивность и ширина линии ЯМР воды или масла позволяют с высокой точностью измерять влажность и масличность семян, сохранность зерна. При отстройке от сигналов воды можно регистрировать содержание клейковины в каждом зерне, что так же, как и анализ масличности, позволяет вести ускоренную селекцию с.-х. культур. Применение все более сильных магнитных полей (до 14 Тл в серийных приборах и до 19 Тл в экспериментальных установках) обеспечивает возможность полного определения структуры белковых молекул в растворах, экспресс-анализа биологических жидкостей (концентрации эндогенных метаболитов в крови, моче, лимфе, спинномозговой жидкости), контроля качества новых полимерных материалов. При этом применяют многочисленные варианты многоквантовых и многомерных фурье-спектроскопических методик.



Публикации по теме